PG Programme: Course Outcome Name of the Course: M.Sc. Organic Chemistry

In the Format of, Class Semester Course Code, Course Title Course Outcome

CO	Course Outcome	
No.		
M. Sc. I		
	Semester-I	
C	CTP1 CHP110 Physical Chemistry-I (Fundamentals of Physical Chemistry)	
CO1	After successfully completing this course, students will be able: to learn	
	Thermodynamics parameters at different conditions.	
CO2	Explain the applications of colligative properties.	
CO3	Applications of quantum chemistry.	
CO4	Types of hybridization, idea of Valence bond theory and Molecular orbital theory.	
CO5	Huckel theory, applications to simple π systems.	
CO6	basic concept in rate law equation.order of reactions.	
CO7	Collision theory of bimolecules.	
CO8	Eyrings equation concept.	
CO9	Michaelis mechanism in enzyme catalyzed reactions.	
CO10	enzyme action and inhibition with examples.	
CO11	Maxwell- Boltzmann relationship.	
CO12	Fermi-Dirac and Bose-Einstein statistics.	
	CCTP-2: CHI-130 Inorganic Chemistry-I	
CO1	After successfully completing this course, students will be able to: Student should	
	visualize/ imagine molecules in 3 dimensions.	
CO2	To understand the concept of symmetry and able to pass various symmetry	
~ ~ ~ ~	elements through the molecule.	
CO3	Understand the concept and point group and apply it to molecules.	
CO4	To apply the concept of point group for determining optical activity and dipole moment.	
CO5	To understand product of symmetry operations.	
CO6	Student able to find out character for reducible representation.	
CO7	To know about projection operator.	
CO8	Apply projection operator to find out the normalized wave function for atomic orbital.	
CO9	Student should correlate the application of symmetry to spectroscopy.	
CO10	From the previous knowledge of symmetry student must able to find out which mode are IR active.	
CO11	Student should understand the detail chemistry of S and P block elements w.r.t.	
	their compounds, their reactions and applications.	
CO12	To learn the advance chemistry of boranes, fullerene, zeolites, polymers etc.	
CO13	Organometallic chemistry of some important elements from the main groups and	
	their applications	
CCTP3:CHO150 Organic Chemistry-I		
CO1	At the end of the course the students will know and recall the fundamental	
	principles of organic chemistry that include chemical bonding, nomenclature,	
	structural isomerism, stereochemistry, chemical reactions and mechanism.	

CO2	They will understand the criteria for aromaticity in nonbenzenoid molecules and
	other advanced polycyclic aromatics.
CO3	Understand the chemistry of monocyclic heterocycles, nomenclature and reactions.
CO4	Learn the concept stereochemistry and its importance; their rules and the concept of chirality.
CO5	Understand the role of various reaction intermediates like carbocation, carbanion.
	carbenes, radicals, and nitrenes in organic reactions; concept of NGP.
CO6	Able to describe mechanism of different rearrangement reactions. Appreciates the
	various steps involved in the molecular rearrangements.
CO7	Understand the chemistry of Ylides.
CO8	Use synthetic reagent of oxidation and reduction for solving the problems.
CO9	To understand some fundamental aspects of organic chemistry, to learn the
	concept aromaticity, to understand the various types of aromaticity.
CO10	To study heterocyclic compound containing one and two hetero atoms with their
	structure, synthesis and reactions.
CO11	To know stereochemistry of organic compounds; able to do interconversion of
	Fischer to Newmann, Newmann to Sawhorse and vice versa, Able to assign R and
	S to given molecules; understand stereoselective and stereospecific reactions;
GG 1 •	acquire knowledge on topicity.
CO12	To study structure, formation, stability and related name reaction of intermediates
	like Carbocation, Carbanion, Free Radical, Carbenes and nitrenes; Recognize
CO12	To study reasons and migration.
COIS	of different groups
CO14	To study Vlides and their reaction
C014	To understands the basis of redox reaction: acquire knowledge about the reagents
015	which causes selective oxidation
C016	reduction in various compounds: learn the basic mechanism of oxidation /
0010	reduction in organic compounds
	CBOP-1: CHG – 190 General Chemistry-I
CO1	The goal of this course is to introduce students to fundamental concepts in
001	Chemical Biology and methods of chemistry used to solve problems in molecular
	and cell biology. After completion of this course, successful students will.
CO2	Students will be able to explore new areas of research in both chemistry and allied
	fields of science and technology.
CO3	Students will be able to function as a member of an interdisciplinary problem
	solving team.
CO4	To impart the student's thorough idea in the chemistry of carbohydrates, amino
	acids, proteins and nucleic acids etc.
CO5	Be able to describe the chemical basis for replication, transcription, translation and
	how each of these central processes can be expanded to include new chemical
	matter.
CO6	Develop skills to critically read the literature and effectively communicate research
	in a peer setting.
001	CCPP-1: CHP-107 Basic Chemistry Practical Course – I
COI	At the end of the course the students will know and recall the fundamental
<u> </u>	principles of organic chemistry that include research and development, further.
CO_2	Determination of an order of a reaction.
CO_{4}	Application of Colorimetry and spectrophotometry.
C04	Groon Chamietry principles and application in organic transformations
COS	Application of few efficient catalyst in the organic reaction
	Application of lew efficient cataryst in the organic feaction.

	Semester-II	
CCTP-4: CHP-210 Physical Chemistry-II		
CO1	At the end of the course the students will know and recall the fundamental	
	principles of physical chemistry and inorganic chemistry-oriented reactions and	
	effects of parameters, in addition to this student would be skilled in understanding.	
CO2	Types of molecules on the basis of moment of inertia and rotational spectra.	
CO3	Spectroscopic technique such as Infrared Spectroscopy, breakdown of the Born-	
	Oppenheimer approximation.	
CO4	carbon dioxide laser and Applications.	
CO5	Quantum and classical theory of Raman effect.	
CO6	Electronic Spectroscopy of molecules.	
CO7	radioactive decay and its characteristics.	
CO8	Process of nuclear fission and fission.	
	CCTP-5: CHI-230 Inorganic Chemistry	
CO1	Student should able to find out the no of microstates and meaningful term symbols,	
	Construction of microstate table for various configuration.	
CO2	Hund's rules for arranging the terms according to energy.	
CO3	Student should know the concept of weak and strong ligand field.	
CO4	Student should know basic d-d transition, d-p mixing, charge transfer spectra.	
CO5	Interpretation of electronic spectra for spin allowed oh and td complexes using	
	Orgel diagram.	
CO6	Understand the concept of Spectro chemical series and Nephelauxetic series.	
CO7	Various phenomenon's of magnetism and their temperature dependence.	
CO8	Various experimental methods to find out magnetic moment.	
CO9	Understand the various Quenching of orbital angular momentum.	
CO10	Understand the various terms involved in magnetochemistry.	
CO11	Should able to solve numerical based on crystal field parameters.	
CO12	Interpretation of electronic spectra for spin allowed oh and td complexes using	
	Orgel diagram.	
CO13	Interpretation of electronic spectra for spin allowed oh and td complexes using	
	Orgel diagram.	
CO14	Importance and transport of metal ions.	
CO15	Nerve impulse generation in rod cell of retina.	
CO16	Importance and function of Ca, Fe and Mg in metalloprotein.	
	CCTP6: CHO – 250 Organic Chemistry-II	
CO1	Students should able to understand free radicals' formation, stability and reactivity	
	and should also be able to use the basic understanding in writing probable reaction	
	mechanisms.	
CO2	Students should able to write MO diagram for various olefinic compounds and	
	should able to predict the products, the stereochemistry as well as should able to	
	understand the preferred reaction pathways.	
CO3	Students should able to calculate max of organic compounds containing more than	
	one and less than four conjugated systems. Students should able to correlate IR	
	bands with functional groups using numerical data as well as spectral data.	
CO4	Students should able to solve 1H-NMR problems and should also able to draw the	
	1H-NMR spectrum for simple organic compounds mentioning multiplicity pattern	
	and coupling constant with the help of "Tree Diagram" Should able to predict and	
	analyze the multiplicity patterns with more than one coupling constants.	
CO5	Students should able to use 13C-NMR data to interpret the structure NMR	
	problems and should also able to draw the 1H-NMR spectrum for simple organic	
	compounds mentioning multiplicity pattern and coupling constant with the help of	

	"Tree Diagram" Should be able to predict and analyze the multiplicity patterns
<u>CO6</u>	with more than one coupling constants. Students should know various kay factors responsible for the exactroscopic date
000	students should know various key factors responsible for the spectroscopic data
	1HNMR 13CNMR
C07	MOT and will be able to extend this in predicting reaction mechanism and
007	Stereochemistry of electrocyclic reactions
CO8	The concepts in free radical reactions, mechanism and the stereo chemical
000	outcomes.
CO9	The basic principle of spectroscopic methods and their applications in structure
	elucidation of organic compounds using given spectroscopic data or spectra.
	CBOP-2: CHG – 290 General Chemistry -II
CO1	The goal of this course is to introduce students to fundamental concepts in
	Chemical Biology and methods of chemistry used to solve problems in molecular
	and cell biology. After completion of this course, successful students will.
CO2	
CO3	Students will be able to explore new areas of research in both chemistry and allied
	fields of science and technology.
CO4	Students will be able to function as a member of an interdisciplinary problem-
	solving team.
CO5	To impart the student's thorough idea in the chemistry of carbohydrates, amino
	acids, proteins and nucleic acids etc.
CO6	Be able to describe the chemical basis for replication, transcription, translation and
	how each of these central processes can be expanded to include new chemical
<u> </u>	maller.
07	in a peer setting
CO8	Describe the importance of chemical biology research and interdisciplinary work
000	CCPP-2: CHP-227 Practical Course-II
CO1	This course is designed to make students aware of how to perform organic
	compounds in laboratory.
CO2	The course includes synthesis of some derivatives and organic compounds, which
	will help them while working in research laboratory in future.
CO3	Making derivatives of organic compounds will help them in industry or while
	doing research in medicinal chemistry for Drug development.
CO4	This practical course is also designed to make student aware of green chemistry
	and role of green chemistry in pollution reduction.
CO5	The students learn how to avoid solvents and do solvent free reaction.
CO6	Also, the work-up procedure in many experiments is made more eco-friendly to
	environment.
	M.Sc. II
	Semester-III
<u>CO1</u>	CCTP-7, CHO-350 Organic Reaction Mechanism and Biogenesis
COI	After successfully completing this course, students will be able to: Explain the
CO^{2}	Free radical generation stability and their application
CO_2	Cleavage of C-Heteroatom and formation of free radicals
CO_4	Linear Free Energy Relationships with Hammet equation deviation and effects of
	substituents on the ring
CO5	Insight of alkaloids. Terpenoids and The Shikimate pathway.
CO6	Alkaloids isolated from the Roots of Piper nigrum.

CCTP-8, CHO-351 Structure Determination of Organic Compounds by		
CO1	After successfully completing this course, students will be able to: Explain	
COI	principles of NMR techniques.	
CO2	NOE and its application.	
CO3	APT. DEPT and INEPT techniques.	
CO4	Elucidation of organic compounds, catalysts and biomolecules.	
CO5	COSY and TOCSY techniques of NMR.	
CO6	2D-INADEQUATE, 2D- ADEQUATE, NOESY, ROESY (b) Heteronuclear:	
	HSQC, HMQC and HMBC techniques.	
CO7	Principles of Mass Spectrometry.	
CO8	Ionization methods like EI, CI, ES, MALDI and FAB-Fragmentation.	
CO9	Isotopic Abundance in structure establishment.	
CO10	Analysis of Biomolecules.	
CO11	Structure elucidation using UV using different techniques.	
(CCTP-9, CHO-352 Stereochemistry and Asymmetric Synthesis of Organic	
	Compounds	
CO1	After successfully completing this course, students will be able to: Stereochemistry	
	of polysubstituted cyclohexane, six membered rings with SP2 carbon, heterocycles	
	with N and O.	
CO2	stereochemical principles involved in reactions of six membered rings and other	
	than six membered rings.	
CO3	Stereochemistry of fused and bridged ring systems.	
CO4	Nomenclature, synthesis; stereochemical aspects of Perhydrophenanthrene.	
CO5	Perhydroanthracene, hydrindane, Steroids; Bridged system.	
CO6	Conformations of substituted cyclohexanes.	
CO7	Determination of configuration	
CO8	Resolution and analysis of stereomers - formation of racemization and methods of resolution.	
CO9	Asymmetric Synthesis, Chirol pool and Chiral auxillaries.	
CO10	Transition Metal-Catalyzed Homogeneous Asymmetric Hydrogenation.	
CO11	Transition Metal-Catalyzed Homogeneous Asymmetric Hydroxylation and	
	Epoxidation	
C	HO-353(A) Protection-Deprotection, Chiron Approach and Carbohydrate	
CO1	Protection and deprotection of functional group in organic Synthesis	
CO2	The concept of chiral templaten and chirons wherein the carbon skeleton is the	
	chiral precursor,	
CO3	Basic of carbohydrate	
CO4	Synthesis of Glycosides	
	CCPP-3, CHO-354 Practical-I Solvent Free Organic Synthesis	
CO1	After successfully completing this course, students will be able to: Explain Solvent	
9.2.5	Free Carbon–Carbon Bond Formation.	
CO2	Solvent-Free C–N Bond Formation.	
<u>CO3</u>	Solvent-Free C–S Bond Formation.	
CO4	Solvent-Free C–X Bond Formation.	
CO5	Solvent-Free N–N Bond Formation	
CO6	Solvent free supramolecular assembly formation	
	Semester-IV	
CCTP10, CHO-450 Chemistry of Natural Products		

CO1	After successfully completing this course, students will be able to learn:
	Understanding and planning of total synthesis while maintaining the
	stereochemistry.
CO2	Explain total Synthesis Hirsutellone.
CO3	Explain total Synthesis Ribisins.
	CCTP11, CHO451 Organometallic Reagents in Organic Synthesis
CO1	After successfully completing this course, students will be able to: Explain use of
	transition metal complexes in organic synthesis.
CO2	Explain C=C formation reactions.
CO3	Illustration of Ring formation reactions.
CO4	Idea behind the Click chemistry: criterion for click reaction.
CO5	Explain concept of Metathesis.
CO6	Explain the use of Boron and Silicon reagents in organic synthesis.
CO7	Illustrate the preparation and management of fish culture ponds.
CO8	Demonstrate the methods of packaging and transport of fish and brood fish.
CO9	Illustrate techniques of fish harvesting, preservation & processing.
CO10	Compare the techniques used in fishery development.
(CBOP-4, CHO-452(A) Concepts and Applications of Medicinal Chemistry
CO1	After successfully completing this course, students will be able to: Explain
	Proteins as biological catalyst Nucleic acids.
CO2	Explain Principle of drug design, Chemistry of diseases and Drug development.
CO3	Explain Peptides, sequencing and applications in therapeutics.
CO4	Explain Design of Oxamniquine.
CO5	Explain Pharmacokinetics and Pharmacodynamics.
CO6	Explain Structure and activity Relationship: QSAR And application.
	CBOP-5, CHO-453 Practical-III Section-I: Ternary Mixture Separation
	Section-II: Carbohydrates Synthesis and Isolation Natural Products
CO1	After successfully completing this course, students will be able to: Understand and
	employ concept of type determination and separation.
CO2	Perform qualitative estimation of functional groups.
CO3	Recrystallize /distill the separated compounds.
CO4	Carbohydrate Synthesis.
CO5	Isolation of pigments from the natural products.
CO6	Isolation of essential oils from the natural products.
CO7	Isolation of medicinally important component from the natural products
CO8	Students should carry out a small research project.
CO9	Becomes familiar with i. Literature survey, research methodologies, Column and
	TLC chromatographic techniques.
CC	PP-04, CHO454: Practical-II: Convergent and Divergent Organic Syntheses
CO1	After successfully completing this course, students will be able to: Learn
	convergent Synthesis involving acylation, reduction.
CO2	Divergent Synthesis involving acylation, nitration, One pot synthesis.
CO3	Resolution technique.
CO4	Sulfonation reaction.
CO5	Three Stage Syntheses.