
Chapter 2 Networking

Java Networking

Java Networking is a concept of connecting two or more computing devices together so that

we can share resources.

Java socket programming provides facility to share data between different computing

devices.

Advantage of Java Networking

1. sharing resources

2. centralize software management

Java Networking Terminology

The widely used java networking terminologies are given below:

1. IP Address

2. Protocol

3. Port Number

4. MAC Address

5. Connection-oriented and connection-less protocol

6. Socket

1) IP Address

IP address is a unique number assigned to a node of a network e.g. 192.168.0.1 . It is

composed of octets that range from 0 to 255.

It is a logical address that can be changed.

2) Protocol

A protocol is a set of rules basically that is followed for communication. For example:

o TCP

o FTP

o Telnet

o SMTP

o POP etc.

3) Port Number

The port number is used to uniquely identify different applications. It acts as a

communication endpoint between applications.

The port number is associated with the IP address for communication between two

applications.

4) MAC Address

MAC (Media Access Control) Address is a unique identifier of NIC (Network Interface

Controller). A network node can have multiple NIC but each with unique MAC.

5) Connection-oriented and connection-less protocol

In connection-oriented protocol, acknowledgement is sent by the receiver. So it is reliable

but slow. The example of connection-oriented protocol is TCP.

But, in connection-less protocol, acknowledgement is not sent by the receiver. So it is not

reliable but fast. The example of connection-less protocol is UDP.

6) Socket

A socket is an endpoint between two way communication.

Visit next page for java socket programming.

Classes in java.net

 ContentHandler
 DatagramPacket
 DatagramSocket
 DatagramSocketImpl
 HttpURLConnection
 InetAddress
 MulticastSocket
 ServerSocket
 Socket
 SocketImpl
 URL
 URLConnection
 URLEncoder
 URLStreamHandler

Exceptions in java.net

 BindException
 ConnectException
 MalformedURLException
 NoRouteToHostException
 ProtocolException
 SocketException
 UnknownHostException
 UnknownServiceException

Java Socket Programming

Java Socket programming is used for communication between the applications running on
different JRE.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and

DatagramSocket and DatagramPacket classes are used for connection-less socket
programming.

The client in socket programming must know two information:

1. IP Address of Server, and

2. Port number.

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class

can be used to create a socket.

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to

establish communication with the clients.

Important methods

Method Description

1) public Socket

accept()

returns the socket and establish a connection between server and

client.

2) public synchronized

void close()

closes the server socket.

MyClient.java

import java.io.*;

import java.net.*;

public class MyClient

{

public static void main(String[] args)

{

Try

{

Socket s=new Socket("localhost",6666);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

dout.flush();

dout.close();

s.close();

}catch(Exception e){System.out.println(e);}

}

}

MyServer.java

import java.io.*;

import java.net.*;

public class MyServer

 {

public static void main(String[] args)

{

Try

{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept();//establishes connection

DataInputStream dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println("message= "+str);

ss.close();

}catch(Exception e){System.out.println(e);}

}

}

Java URL

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator. It

points to a resource on the World Wide Web. For example:

A URL contains many information:

1. Protocol: In this case, http is the protocol.

2. Server name or IP Address: In this case, www.javatpoint.com is the server name.

3. Port Number: It is an optional attribute. If we write

http//ww.javatpoint.com:80/sonoojaiswal/ , 80 is the port number. If port number is

not mentioned in the URL, it returns -1.

4. File Name or directory name: In this case, index.jsp is the file name.

Commonly used methods of Java URL class

The java.net.URL class provides many methods. The important methods of URL class are

given below.

Method Description

public String getProtocol() it returns the protocol of the URL.

public String getHost() it returns the host name of the URL.

public String getPort() it returns the Port Number of the URL.

public String getFile() it returns the file name of the URL.

public URLConnection openConnection() it returns the instance of URLConnection i.e. associated with this URL.

Example of Java URL class
import java.io.*;

import java.net.*;

public class URLDemo

{

 public static void main(String[] args)

 {

 Try

 {

 URL url=new URL("http://www.javatpoint.com/sonoojaiswal/index.jsp");

 System.out.println("Protocol: "+url.getProtocol());

 System.out.println("Host Name: "+url.getHost());

 System.out.println("Port Number: "+url.getPort());

 System.out.println("File Name: "+url.getFile());

 }catch(Exception e){System.out.println(e);}

 }

}

Java InetAddress class represents an IP address. The java.net.InetAddress class provides
methods to get the IP of any host name for example www.javatpoint.com,

www.google.com, www.facebook.com etc.

Commonly used methods of InetAddress class

Method Description

Public static InetAddress

getByName(String host) throws

UnknownHostException

it returns the instance of InetAddress containing

LocalHost IP and name.

public static InetAddress getLocalHost()

throws UnknownHostException

it returns the instance of InetAdddress containing local

host name and address.

public String getHostName() it returns the host name of the IP address.

public String getHostAddress() it returns the IP address in string format.

Example of Java InetAddress class

import java.io.*;

import java.net.*;

public class InetDemo

{

 public static void main(String[] args)

 {

 Try

 {

 InetAddress ip=InetAddress.getByName("www.javatpoint.com");

 System.out.println("Host Name: "+ip.getHostName());

 System.out.println("IP Address: "+ip.getHostAddress());

 }catch(Exception e){System.out.println(e);}

 }

}

Java DatagramSocket class

Java DatagramSocket class represents a connection-less socket for sending and receiving datagram packets.

A datagram is basically an information but there is no guarantee of its content, arrival or arrival time.

Commonly used Constructors of DatagramSocket class

o DatagramSocket() throws SocketEeption: it creates a datagram socket and binds it with the available

Port Number on the localhost machine.

o DatagramSocket(int port) throws SocketEeption: it creates a datagram socket and binds it with the

given Port Number.

o DatagramSocket(int port, InetAddress address) throws SocketEeption: it creates a datagram socket

and binds it with the specified port number and host address.

Java DatagramPacket class
Java DatagramPacket is a message that can be sent or received. If you send multiple packet, it may arrive in any

order. Additionally, packet delivery is not guaranteed.

Commonly used Constructors of DatagramPacket class

o DatagramPacket(byte[] barr, int length): it creates a datagram packet. This constructor is used to receive

the packets.

o DatagramPacket(byte[] barr, int length, InetAddress address, int port): it creates a datagram packet.

This constructor is used to send the packets.

// DReceiver

import java.net.DatagramPacket;

import java.net.DatagramSocket;

public class DReceiver{

 public static void main(String[] args) throws Exception

{

 DatagramSocket ds = new DatagramSocket(3000);

 byte[] buf = new byte[1024];

 DatagramPacket dp = new DatagramPacket(buf, 1024);

 ds.receive(dp);

 String strRecv = new String(dp.getData(), 0, dp.getLength());

 System.out.println(strRecv);

 ds.close();

 }

}

// DSender

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class DSender{

 public static void main(String[] args) throws Exception {

 DatagramSocket ds = new DatagramSocket();

 String str = "hello world";

 InetAddress ia = InetAddress.getByName("127.0.0.1");

 DatagramPacket dp = new DatagramPacket(str.getBytes(), str.length(), ia, 3000);

 ds.send(dp);

 ds.close();

 }

}

Chapter-3 Servlet and JSP

Servlet technology is used to create web application (resides at server side and generates

dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was popular as a server-side programming

language. But there was many disadvantages of this technology. We have discussed these

disadvantages below.

There are many interfaces and classes in the servlet API such as Servlet, GenericServlet,

HttpServlet, ServletRequest, ServletResponse etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology i.e. used to create web application.

o Servlet is an API that provides many interfaces and classes including

documentations.

o Servlet is an interface that must be implemented for creating any servlet.

o Servlet is a class that extend the capabilities of the servers and respond to the

incoming request. It can respond to any type of requests.

o Servlet is a web component that is deployed on the server to create dynamic web

page.

CGI(Commmon Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP request

information to the external program to process the request. For each request, it starts a

new process.

Disadvantages of CGI

There are many problems in CGI technology:

1. If number of clients increases, it takes more time for sending response.

2. For each request, it starts a process and Web server is limited to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

Advantage of Servlet

There are many advantages of servlet over CGI. The web container creates threads for

handling the multiple requests to the servlet. Threads have a lot of benefits over the
Processes such as they share a common memory area, lightweight, cost of communication

between the threads are low. The basic benefits of servlet are as follows:

1. better performance: because it creates a thread for each request not process.

2. Portability: because it uses java language.

3. Robust: Servlets are managed by JVM so we don't need to worry about memory

leak, garbage collection etc.

4. Secure: because it uses java language..

Let’s differentiate Servlet and CGI –

Servlet CGI (Common Gateway Interface)

Servlets are portable CGI is not portable.

In Servlets each request is handled by

lightweight Java Thread

IN CGI each request is handled by heavy

weight OS process

In Servlets, Data sharing is possible In CGI, data sharing is not available.

Servlets can link directly to the Web CGI cannot directly link to Web server.

Servlet CGI (Common Gateway Interface)

server

Session tracking and caching of

previous computations can be

performed

Session tracking and caching of previous

computations cannot be performed

Automatic parsing and decoding of

HTML form data can be performed.

Automatic parsing and decoding of

HTML form data cannot be performed.

Servlets can read and Set HTTP

Headers
CGI cannot read and Set HTTP Headers

Servlets can handle cookies CGI cannot handle cookies

Servlets can track sessions CGI cannot track sessions

Servlets is inexpensive than CGI CGI is more expensive than Servlets

Types of servlet

GenericServlet class

GenericServlet class implements Servlet, ServletConfig and Serializableinterfaces. It

provides the implementation of all the methods of these interfaces except the service

method.

GenericServlet class can handle any type of request so it is protocol-independent.

You may create a generic servlet by inheriting the GenericServlet class and providing the

implementation of the service method.

Methods of GenericServlet class

There are many methods in GenericServlet class. They are as follows:

1. public void init(ServletConfig config) is used to initialize the servlet.

2. public abstract void service(ServletRequest request, ServletResponse

response) provides service for the incoming request. It is invoked at each time

when user requests for a servlet.

3. public void destroy() is invoked only once throughout the life cycle and indicates

that servlet is being destroyed.

4. public ServletConfig getServletConfig() returns the object of ServletConfig.

5. public String getServletInfo() returns information about servlet such as writer,

copyright, version etc.

6. public void init() it is a convenient method for the servlet programmers, now there

is no need to call super.init(config)

7. public ServletContext getServletContext() returns the object of ServletContext.

8. public String getInitParameter(String name) returns the parameter value for

the given parameter name.

9. public Enumeration getInitParameterNames() returns all the parameters

defined in the web.xml file.

10. public String getServletName() returns the name of the servlet object.

11. public void log(String msg) writes the given message in the servlet log file.

12. public void log(String msg,Throwable t) writes the explanatory message in the

servlet log file and a stack trace.

Servlet Example by inheriting the GenericServlet class

import java.io.*;
import javax.servlet.*;

public class First extends GenericServlet

{

public void service(ServletRequest req,ServletResponse res)

 throws IOException,ServletException

{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.print("<html><body>");

out.print("hello generic servlet");

out.print("</body></html>");

}

}

HttpServlet class

The HttpServlet class extends the GenericServlet class and implements Serializable

interface. It provides http specific methods such as doGet, doPost, doHead, doTrace etc.

Methods of HttpServlet class

There are many methods in HttpServlet class. They are as follows:

1. public void service(ServletRequest req,ServletResponse res) dispatches the

request to the protected service method by converting the request and response

object into http type.

2. protected void service(HttpServletRequest req, HttpServletResponse

res) receives the request from the service method, and dispatches the request to

the doXXX() method depending on the incoming http request type.

3. protected void doGet(HttpServletRequest req, HttpServletResponse

res) handles the GET request. It is invoked by the web container.

4. protected void doPost(HttpServletRequest req, HttpServletResponse

res) handles the POST request. It is invoked by the web container.

5. protected void doHead(HttpServletRequest req, HttpServletResponse

res) handles the HEAD request. It is invoked by the web container.

6. protected void doOptions(HttpServletRequest req, HttpServletResponse

res) handles the OPTIONS request. It is invoked by the web container.

7. protected void doPut(HttpServletRequest req, HttpServletResponse

res) handles the PUT request. It is invoked by the web container.

8. protected void doTrace(HttpServletRequest req, HttpServletResponse

res) handles the TRACE request. It is invoked by the web container.

9. protected void doDelete(HttpServletRequest req, HttpServletResponse

res) handles the DELETE request. It is invoked by the web container.

10. protected long getLastModified(HttpServletRequest req) returns the time

when HttpServletRequest was last modified since midnight January 1, 1970 GMT.

Life cycle of servlet

A servlet life cycle can be defined as the entire process from its creation till the destruction. The

following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is created, and not called

for any user requests afterwards. So, it is used for one-time initializations, just as with the init

method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet,

but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user

request resulting in a new thread that is handed off to doGet or doPost as appropriate. The init()

method simply creates or loads some data that will be used throughout the life of the servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

The service() method is the main method to perform the actual task. The servlet container (i.e.

web server) calls the service() method to handle requests coming from the client(browsers) and

to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.)

and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse response) throws ServletException, IOException

{

}

The service () method is called by the container and service method invokes doGe, doPost,

doPut, doDelete, etc. methods as appropriate. So you have nothing to do with service() method

but you override either doGet() or doPost() depending on what type of request you receive from

the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here

is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,

IOException

{

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and

it should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,

IOException

{

 // Servlet code

}

The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet. This method

gives your servlet a chance to close database connections, halt background threads, write cookie

lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection. The

destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

Steps to create a servlet example

There are given 6 steps to create a servlet example. These steps are required for all the
servers.

The servlet example can be created by three ways:

1. By implementing Servlet interface,

2. By inheriting GenericServlet class, (or)

3. By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet because it provides http request

specific method such as doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this example. The steps are as

follows:

1. Create a directory structure

2. Create a Servlet

3. Compile the Servlet

4. Create a deployment descriptor

5. Start the server and deploy the project

6. Access the servlet

1)Create a directory structures

The directory structure defines that where to put the different types of files so that web

container may get the information and respond to the client.

The Sun Microsystem defines a unique standard to be followed by all the server vendors.
Let's see the directory structure that must be followed to create the servlet.

As you can see that the servlet class file must be in the classes folder. The web.xml file

must be under the WEB-INF folder.

2)Create a Servlet

There are three ways to create the servlet.

1. By implementing the Servlet interface

2. By inheriting the GenericServlet class

3. By inheriting the HttpServlet class

The HttpServlet class is widely used to create the servlet because it provides methods to

handle http requests such as doGet(), doPost, doHead() etc.

In this example we are going to create a servlet that extends the HttpServlet class. In

this example, we are inheriting the HttpServlet class and providing the implementation of

the doGet() method. Notice that get request is the default request.

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class DemoServ extends HttpServlet

{

Public void doGet(HttpServletRequest req,HttpServletResponse res)throws

ServletException,IOException

{

res.setContentType("text/html");

PrintWriter pw=res.getWriter();

String name=req.getParameter("name");

pw.println("Welcome "+name);

}}

3)Create the deployment descriptor (web.xml file)

The deployment descriptor is an xml file, from which Web Container gets the information

about the servet to be invoked.

The web container uses the Parser to get the information from the web.xml file. There are

many xml parsers such as SAX, DOM and Pull.

There are many elements in the web.xml file. Here is given some necessary elements to run

the simple servlet program.

web.xml file

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<servlet-class>DemoServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

Session Tracking in Servlets

Session simply means a particular interval of time.

Session Tracking is a way to maintain state (data) of an user. It is also known as session

management in servlet.

Http protocol is a stateless so we need to maintain state using session tracking techniques.
Each time user requests to the server, server treats the request as the new request. So we

need to maintain the state of an user to recognize to particular user.

HTTP is stateless that means each request is considered as the new request. It is shown in

the figure given below:

Why use Session Tracking?

To recognize the user It is used to recognize the particular user.

Session Tracking Techniques

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client

requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and

domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add

cookie with response from the servlet. So cookie is stored in the cache of the browser. After

that if request is sent by the user, cookie is added with request by default. Thus, we
recognize the user as the old user.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

How to create Cookie?

Let's see the simple code to create cookie.

1. Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object

2. response.addCookie(ck);//adding cookie in the response

Simple example of Servlet Cookies

In this example, we are storing the name of the user in the cookie object and accessing it in

another servlet. As we know well that session corresponds to the particular user. So if you

access it from too many browsers with different values, you will get the different value.

index.html

<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='go'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 Cookie ck[]=request.getCookies();

 out.print("Hello "+ck[0].getValue());

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

Output

2) Hidden Form Field

In case of Hidden Form Field a hidden (invisible) textfield is used for maintaining the

state of an user.

In such case, we store the information in the hidden field and get it from another servlet.
This approach is better if we have to submit form in all the pages and we don't want to

depend on the browser.

Let's see the code to store value in hidden field.

1. <input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or page
name in the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field

1. It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:

1. It is maintained at server side.

2. Extra form submission is required on each pages.

3. Only textual information can be used.

3)URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next

resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value pair is

separated from another parameter using the ampersand(&). When the user clicks the

hyperlink, the parameter name/value pairs will be passed to the server. From a Servlet, we

can use getParameter() method to obtain a parameter value.

4) HttpSession interface

In such case, container creates a session id for each user.The container uses this id to
identify the particular user.An object of HttpSession can be used to perform two tasks:

1. bind objects

2. view and manipulate information about a session, such as the session identifier,

creation time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of HttpSession:

1. public HttpSession getSession():Returns the current session associated with this

request, or if the request does not have a session, creates one.

2. public HttpSession getSession(boolean create):Returns the current HttpSession

associated with this request or, if there is no current session and create is true,

returns a new session.

