
T. Y. B. C. A.
Semester VI

Subject Name -: Advance Java

Course Code -: 602

Prepared By Prof.Bhujbal V.N.

Unit

No. Topic

1. JDBC

1.1 The design of JDBC

1.2 Basic JDBS program Concept

1.3 Drivers

1.4 Making the Connection, Statement , ResultSet

1.5 Executing SQL commands

1.6 Executing queries

2 Networking

2.1 The java.net package

2.2 Connection oriented transmission – Stream

Socket Class

2.3 Creating a Socket to a remote host on a port

(creating TCP client and server)

3 Servlet

3.1 Introduction

3.2 How It differ from CGI

3.3 Types of servlet

3.4 Life cycle of servlet

3.5 Execution process of Servlet Application

3.6 Session Tracking

3.7 Cookie class

3.8 Servlet- Jdbc
 Introduction to JSP

3.9 Components of JSP – Directives , Tags, Scripting Elements

3.10 Building a simple application using JSP

4 Multithreading

4.1 Introduction to Thread

4.2 Life cycle of thread

4.3 Thread Creation

- By using Thread Class

- By Using Runnable interface

4.4 Priorities and Synchronization

4.5 Inter thread communication

4.6 Implementation of Thread with Applet

1. JDBC

What is JDBC?

JDBC is Java application programming interface that allows the Java programmers to access

database management system from Java code. It was developed by JavaSoft, a subsidiary of Sun

Microsystems.

Definition
Java Database Connectivity in short called as JDBC. It is a java API which enables the java

programs to execute SQL statements. It is an application programming interface that defines how

a java programmer can access the database in tabular format from Java code using a set of

standard interfaces and classes written in the Java programming language.

Introduction

JDBC has been developed under the Java Community Process that allows multiple

implementations to exist and be used by the same application. JDBC provides methods for

querying and updating the data in Relational Database Management system such as SQL,

Oracle etc.

The Java application programming interface provides a mechanism for dynamically loading the

correct Java packages and drivers and registering them with the JDBC Driver Manager that is

used as a connection factory for creating JDBC connections which supports creating and

executing statements such as SQL INSERT, UPDATE and DELETE. Driver Manager is the

backbone of the jdbc architecture.

Generally all Relational Database Management System supports SQL and we all know that Java

is platform independent, so JDBC makes it possible to write a single database application that

can run on different platforms and interact with different Database Management Systems.

Java Database Connectivity is similar to Open Database Connectivity (ODBC) which is used for

accessing and managing database, but the difference is that JDBC is designed specifically for

Java programs, whereas ODBC is not depended upon any language.

In short JDBC helps the programmers to write java applications that manage these three

programming activities:

1. It helps us to connect to a data source, like a database.

2. It helps us in sending queries and updating statements to the database and

3. Retrieving and processing the results received from the database in terms of answering to

your query.

Product Components of JDBC

JDBC has four Components:

1. The JDBC API.

2. The JDBC Driver Manager.

3. The JDBC Test Suite.

4. The JDBC-ODBC Bridge.

1. The JDBC API.

The JDBC application programming interface provides the facility for accessing the relational

database from the Java programming language. The API technology provides the industrial

standard for independently connecting Java programming language and a wide range of

databases. The user not only execute the SQL statements, retrieve results, and update the data but

can also access it anywhere within a network because of it's "Write Once, Run Anywhere"

(WORA) capabilities.

Due to JDBC API technology, user can also access other tabular data sources like spreadsheets

or flat files even in the a heterogeneous environment. JDBC application programming interface

is a part of the Java platform that have included Java Standard Edition (Java SE) and the Java

Enterprise Edition (Java EE) in itself.

The JDBC API has four main interface:

The latest version of JDBC 4.0 application programming interface is divided into two packages

i-) java.sql

ii-) javax.sql.

Java SE and Java EE platforms are included in both the packages.

2. The JDBC Driver Manager.

The JDBC Driver Manager is a very important class that defines objects which connect Java

applications to a JDBC driver. Usually Driver Manager is the backbone of the JDBC

architecture. It's very simple and small that is used to provide a means of managing the different

types of JDBC database driver running on an application. The main responsibility of JDBC

database driver is to load all the drivers found in the system properly as well as to select the

most appropriate driver from opening a connection to a database. The Driver Manager also

helps to select the most appropriate driver from the previously loaded drivers when a new open

database is connected.

3. The JDBC Test Suite.
The function of JDBC driver test suite is to make ensure that the JDBC drivers will run user's

program or not . The test suite of JDBC application program interface is very useful for testing

a driver based on JDBC technology during testing period. It ensures the requirement of Java

Platform Enterprise Edition (J2EE).

4. The JDBC-ODBC Bridge.
The JDBC-ODBC bridge, also known as JDBC type 1 driver is a database driver that utilize the

ODBC driver to connect the database. This driver translates JDBC method calls into ODBC

function calls. The Bridge implements Jdbc for any database for which an Odbc driver is

available. The Bridge is always implemented as the sun.jdbc.odbc Java package and it contains a

native library used to access ODBC.

Now we can conclude this topic: This first two component of JDBC, the JDBC API and the

JDBC Driver Manager manages to connect to the database and then build a java program that

utilizes SQL commands to communicate with any RDBMS. On the other hand, the last two

components are used to communicate with ODBC or to test web application in the

specialized environment.

1.1 The design of JDBC

The JDBC API uses a driver manager and database-specific drivers to provide transparent

connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data

source. The driver manager is capable of supporting multiple concurrent drivers

connected to multiple heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager

with respect to the JDBC drivers and the Java application:

1.2 Basic JDBC program Concept

JDBC is an API specification developed by Sun Microsystems that defines a uniform interface

for accessing various relational databases. JDBC is a core part of the Java platform and is

included in the standard JDK distribution.

The primary function of the JDBC API is to provide a means for the developer to issue SQL

statements and process the results in a consistent, database-independent manner. JDBC provides

rich, object-oriented access to databases by defining classes and interfaces that represent objects

such as:

1. Database connections

2. SQL statements

3. Result Set

4. Database metadata

5. Prepared statements

6. Binary Large Objects (BLOBs)

7. Character Large Objects (CLOBs)

8. Callable statements

9. Database drivers

10. Driver manager

The JDBC API uses a Driver Manager and database-specific drivers to provide transparent

connectivity to heterogeneous databases. The JDBC driver manager ensures that the correct

driver is used to access each data source. The Driver Manager is capable of supporting multiple

concurrent drivers connected to multiple heterogeneous databases. The location of the driver

manager with respect to the JDBC drivers and the servlet is shown in Figure 1.

Layers of the JDBC Architecture

A JDBC driver translates standard JDBC calls into a network or database protocol or into a

database library API call that facilitates communication with the database. This translation layer

provides JDBC applications with database independence. If the back-end database changes, only

the JDBC driver need be replaced with few code modifications required

JDBC Driver Manager

The JDBC DriverManager class defines objects which can connect Java applications to a

JDBC driver. DriverManager has traditionally been the backbone of the JDBC architecture. It is

quite small and simple.

This is a very important class. Its main purpose is to provide a means of managing the different

types of JDBC database driver. On running an application, it is the DriverManager's

responsibility to load all the drivers found in the system property jdbc. drivers. For example, this

is where the driver for the Oracle database may be defined. This is not to say that a new driver

cannot be explicitly stated in a program at runtime which is not included in jdbc.drivers. When

opening a connection to a database it is the DriverManager' s role to choose the most appropriate

driver from the previously loaded drivers.

The JDBC API defines the Java interfaces and classes that programmers use to connect to

databases and send queries. A JDBC driver implements these interfaces and classes for a

particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a particular DBMS before

it actually connects to a database. The JDBC DriverManager class then sends all JDBC API calls

to the loaded driver.

1.3 Drivers

JDBC Driver

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are

used to categorize the technology used to connect to the database. A JDBC driver vendor uses

these types to describe how their product operates. Some JDBC driver types are better suited for

some applications than others.

Types of JDBC drivers

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are

used to categorize the technology used to connect to the database. A JDBC driver vendor uses

these types to describe how their product operates. Some JDBC driver types are better suited for

some applications than others.

 There are four types of JDBC drivers known as:

 JDBC-ODBC bridge plus ODBC driver, also called Type 1.

 Native-API, partly Java driver, also called Type 2.

 JDBC-Net, pure Java driver, also called Type 3.

 Native-protocol, pure Java driver, also called Type 4.

Type 1 Driver- the JDBC-ODBC bridge

The JDBC type 1 driver, also known as the JDBC-ODBC bridge is a database driver

implementation that employs the ODBC driver to connect to the database. The driver converts

JDBC method calls into ODBC function calls. The bridge is usually used when there is no pure-

Java driver available for a particular database.

The driver is implemented in the sun.jdbc.odbc.JdbcOdbcDriver class and comes with the Java 2

SDK, Standard Edition. The driver is platform-dependent as it makes use of ODBC which in turn

depends on native libraries of the operating system. Also, using this driver has got other

dependencies such as ODBC must be installed on the computer having the driver and

the database which is being connected to must support an ODBC driver. Hence the use of this

driver is discouraged if the alternative of a pure-Java driver is available.

Type 1 is the simplest of all but platform specific i.e only to Microsoft platform.

A JDBC-ODBC bridge provides JDBC API access via one or more ODBC drivers. Note that

some ODBC native code and in many cases native database client code must be loaded on each

client machine that uses this type of driver. Hence, this kind of driver is generally most

appropriate when automatic installation and downloading of a Java technology application is

not important. For information on the JDBC-ODBC bridge driver provided by Sun, see JDBC-

ODBC Bridge Driver.

Type 1 drivers are "bridge" drivers. They use another technology such as Open Database

Connectivity (ODBC) to communicate with a database. This is an advantage because ODBC

drivers exist for many Relational Database Management System (RDBMS) platforms. The Java

Native Interface (JNI) is used to call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be

used with it. This can be a serious drawback for a production application. Type 1 drivers cannot

be used in an applet since applets cannot load native code.

Type 1 JDBC-ODBC Bridge. Type 1 drivers act as a "bridge" between JDBC and another

database connectivity mechanism such as ODBC. The JDBC- ODBC bridge provides JDBC

access using most standard ODBC drivers. This driver is included in the Java 2 SDK within the

sun.jdbc.odbc package. In this driver the java statements are converted to a jdbc statements.

JDBC statements calls the ODBC by using the JDBC-ODBC Bridge. And finally the query is

executed by the database. This driver has serious limitation for many applications. (See Figure

2.)

Type 1 JDBC Architecture

Functions:

1. Translates query obtained by JDBC into corresponding ODBC query, which is then

handled by the ODBC driver.

2. Sun provides a JDBC-ODBC Bridge driver. sun.jdbc.odbc.JdbcOdbcDriver. This driver

is native code and not Java, and is closed

 source.

3. Client -> JDBC Driver -> ODBC Driver -> Database

4. There is some overhead associated with the translation work to go from JDBC to ODBC.

Advantages:

Almost any database for which ODBC driver is installed, can be accessed.

Disadvantages:

1. Performance overhead since the calls have to go through the JDBC overhead bridge to

the ODBC driver, then to the native database connectivity interface.

2. The ODBC driver needs to be installed on the client machine.

3. Considering the client-side software needed, this might not be suitable for applets.

Type 2 Driver - the Native-API Driver

The JDBC type 2 driver, also known as the Native-API driver is a database driver

implementation that uses the client-side libraries of the database. The driver converts JDBC

method calls into native calls of the database API.

The type 2 driver is not written entirely in Java as it interfaces with non-Java code that makes the

final database calls.

The driver is compiled for use with the particular operating system. For platform interoperability,

the Type 4 driver, being

a full-Java implementation, is preferred over this driver.

A native-API partly Java technology-enabled driver converts JDBC calls into calls on the client

API for Oracle, Sybase, Informix, DB2, or other DBMS. Note that, like the bridge driver, this

style of driver requires that some binary code be loaded on each client machine.

However the type 2 driver provides more functionality and performance than the type 1 driver as

it does not have the overhead of the additional ODBC function calls.

Type 2 drivers use a native API to communicate with a database system. Java native methods are

used to invoke the API functions that perform database operations. Type 2 drivers are generally

faster than Type 1 drivers.

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also

uses the JNI. You cannot use a Type 2 driver in an applet since applets cannot load native code.

A Type 2 JDBC driver may require some Database Management System (DBMS) networking

software to be installed.

The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Type 2 Java to Native API. Type 2 drivers use the Java Native Interface (JNI) to make calls

to a local database library API. This driver converts the JDBC calls into a database specific call

for databases such as SQL, ORACLE etc. This driver communicates directly with the database

server. It requires some native code to connect to the database. Type 2 drivers are usually faster

than Type 1 drivers. Like Type 1 drivers, Type 2 drivers require native database client libraries

to be installed and configured on the client machine. (See Figure 3.)

Type 2 JDBC Architecture

Functions:

1. This type of driver converts JDBC calls into calls to the client API for that database.

2. Client -> JDBC Driver -> Vendor Client DB Library -> Database

Advantage

Better performance than Type 1 since no jdbc to odbc translation is needed.

Disadvantages

1. The vendor client library needs to be installed on the client machine.

2. Cannot be used in internet due the client side software needed.

3. Not all databases give the client side library.

Type 3 driver - the Network-Protocol Driver

The JDBC type 3 driver, also known as the network-protocol driver is a database driver

implementation which makes use of a middle-tier between the calling program and the database.

The middle-tier (application server) converts JDBC calls directly or indirectly into the vendor-

specific database protocol.

This differs from the type 4 driver in that the protocol conversion logic resides not at the client,

but in the middle-tier. However, like type 4 drivers, the type 3 driver is written entirely in Java.

The same driver can be used for multiple databases. It depends on the number of databases the

middleware has been configured to support. The type 3 driver is platform-independent as the

platform-related differences are taken care by the middleware. Also, making use of the

middleware provides additional advantages of security and firewall access.

A net-protocol fully Java technology-enabled driver translates JDBC API calls into a DBMS-

independent net protocol which is then translated to a DBMS protocol by a server. This net

server middleware is able to connect all of its Java technology-based clients to many different

databases. The specific protocol used depends on the vendor. In general, this is the most flexible

JDBC API alternative. It is likely that all vendors of this solution will provide products suitable

for Intranet use. In order for these products to also support Internet access they must handle the

additional requirements for security, access through firewalls, etc., that the Web imposes.

Several vendors are adding JDBC technology-based drivers to their existing database

middleware products.

These drivers use a networking protocol and middleware to communicate with a server. The

server then translates the protocol to DBMS function calls specific to DBMS.

Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native

binary code on the client. A Type 3 driver does not need any client installation.

Type 3 Java to Network Protocol Or All- Java Driver. Type 3 drivers are pure Java drivers

that use a proprietary network protocol to communicate with JDBC middleware on the server.

The middleware then translates the network protocol to database-specific function calls. Type 3

drivers are the most flexible JDBC solution because they do not require native database libraries

on the client and can connect to many different databases on the back end. Type 3 drivers can be

deployed over the Internet without client installation. (See Figure 4.)

Java-------> JDBC statements------> SQL statements ------> databases.

Type 3 JDBC Architecture

Functions:

1. Follows a three tier communication approach.

2. Can interface to multiple databases - Not vendor specific.

3. The JDBC Client driver written in java, communicates with a middleware-net-server

using a database independent protocol, and then this net server translates this request into

database commands for that database.

4. Thus the client driver to middleware communication is database independent.

5. Client -> JDBC Driver -> Middleware-Net Server -> Any Database

Advantages

1. Since the communication between client and the middleware server is database

independent, there is no need for the vendor db library on the client machine. Also the

client to middleware need'nt be changed for a new database.

2. The Middleware Server (Can be a full fledged J2EE Application server) can provide

typical middleware services like caching (connections, query results, and so on), load

balancing, logging, auditing etc..

3. eg. for the above include jdbc driver features in Weblogic.

4. Can be used in internet since there is no client side software needed.

5. At client side a single driver can handle any database.(It works provided the middlware

supports that database!!)

Disadvantages

1. Requires database-specific coding to be done in the middle tier.

2. An extra layer added may result in a time-bottleneck. But typically this is overcome by

providing efficient middleware

 services described above.

Type 4 - the Native-Protocol Driver

The JDBC type 4 driver, also known as the native-protocol driver is a database driver

implementation that converts JDBC calls directly into the vendor-specific database protocol.

The type 4 driver is written completely in Java and is hence platform independent. It is installed

inside the Java Virtual Machine of the client. It provides better performance over the type 1 and

2 drivers as it does not have the overhead of conversion of calls into ODBC or database API

calls. Unlike the type 1 and 2 drivers, it does not need associated software to work.

A native-protocol fully Java technology-enabled driver converts JDBC technology calls into the

network protocol used by DBMSs directly. This allows a direct call from the client machine to

the DBMS server and is a practical solution for Intranet access. Since many of these protocols

are proprietary the database vendors themselves will be the primary source for this style of

driver. Several database vendors have these in progress.

As the database protocol is vendor-specific, separate drivers, usually vendor-supplied, need to be

used to connect to the database.

A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the

protocols are usually proprietary, DBMS vendors are generally the only companies providing a

Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration.

However, a Type 4 driver may not be suitable for some applications if the underlying protocol

does not handle issues such as security and network connectivity well.

The IBM Toolbox for Java JDBC driver is a Type 4 JDBC driver, indicating that the API is a

pure Java networking protocol driver.

Type 4 Java to Database Protocol. Type 4 drivers are pure Java drivers that implement a

proprietary database protocol (like Oracle's SQL*Net) to communicate directly with the

database. Like Type 3 drivers, they do not require native database libraries and can be deployed

over the Internet without client installation. One drawback to Type 4 drivers is that they are

database specific. Unlike Type 3 drivers, if your back-end database changes, you may save to

purchase and deploy a new Type 4 driver (some Type 4 drivers are available free of charge from

the database manufacturer). However, because Type drivers communicate directly with the

database engine rather than through middleware or a native library, they are usually the fastest

JDBC drivers available. This driver directly converts the java statements to SQL statements.

(See Figure 5.)

Type 4 JDBC Architecture

Functions

1. Type 4 drivers are entirely written in Java that communicate directly with a vendor's

database through socket connections. No translation or middleware layers, are required,

improving performance.

2. The driver converts JDBC calls into the vendor-specific database protocol so that client

applications can communicate directly with the database server.

3. Completely implemented in Java to achieve platform independence.

4. e.g include the widely used Oracle thin driver - oracle.jdbc.driver. OracleDriver which

connect to jdbc:oracle:thin URL format.

5. Client Machine -> Native protocol JDBC Driver -> Database server

Advantages

These drivers don't translate the requests into db request to ODBC or pass it to client api for the

db, nor do they need a middleware layer for request indirection. Thus the performance is

considerably improved.

Disadvantage

At client side, a separate driver is needed for each database.

1.4 Making the Connection, Statement , ResultSet

The JDBC API is comprised of two Java packages: java.sql and javax.sql.

 The following are core JDBC classes, interfaces, and exceptions in the java.sql package:

• DriverManager:

 This class loads JDBC drivers in memory. You can also use it to create java.sql.Connection

objects to data sources (such as Oracle, MySQL, and so on).

• Connection:

 This interface represents a connection with a data source. You can use the Connectionobject for

creating Statement, PreparedStatement, and CallableStatement objects.

• Statement:

A statement object is used to send and execute SQL statements to a database. It Execute simple

sql queries without parameters.Statement createStatement() Creates an SQL Statement object.

 This interface represents a static SQL statement. You can use it to retrieve ResultSet

objects.Statement interface defines methods that are used to interact with database via the

execution of SQL statements. The Statement class has three methods for executing

statements:executeQuery(), executeUpdate(), and execute(). For a SELECT statement, the

method to use is executeQuery . For statements that create or modify tables, the method to use is

executeUpdate. Note: Statements that create a table, alter a table, or drop a table are all examples

of DDLstatements and are executed with the method executeUpdate. execute() executes an

SQLstatement that is written as String object.

• PreparedStatement:

This interface extends Statement and represents a precompiled SQL statement. You can use it to

retrieve ResultSet objects.It Execute precompiled sql queries with or without parameters.

PreparedStatement prepareStatement(String sql)returns a new PreparedStatement object.

PreparedStatement objects are precompiled SQL statements.

• CallableStatement:

This interface represents a database stored procedure. You can use it to execute stored

procedures in a database server.It Execute a call to a database stored procedure.

CallableStatement prepareCall(String sql)returns a new CallableStatement object.

CallableStatement objects are SQL stored procedure call statements.

• ResultSet:

This interface represents a database result set generated by using SQL’s SELECT statement. It

provides access to a table of data generated by executing a Statement. The table rows are

retrieved in sequence. A ResultSet maintains a cursor pointing to its current row of data. The

next() method is used to successively step through the rows of the tabular results.

ResultSetMetaData

 Interface holds information on the types and properties of the columns in a ResultSet. It is

constructed from the Connection object.

• SQLException:

This class is an exception class that provides information on a database access error or other

errors.

1.5 Executing SQL commands

1.6 Executing queries

2.Networking

2.1 The java.net package

The java.net package contains the Socket class. This class speaks TCP (connection-oriented

protocol).

The DatagramSocket class uses UDP (connectionless protocol).

The java.net.Socket class represents a single side of a socket connection on either the client or

server. In addition, the server uses the java.net.ServerSocket class to wait for connections

from clients.

The server creates a ServerSocket object and waits, blocked in a call to its accept() method,

until a connection arrives. When a connection request arrives, the accept() creates a Socket

object. The server uses this Socket object to communicate with the client.

What are sockets?

The socket is the software abstraction used to represent the "terminals" of a connection

between two machines. For a given connection, there's a socket on each machine, and you

can imagine a hypothetical "cable" running between the two machines with each end of the

"cable" plugged into a socket. Of course, the physical hardware and cabling between

machines is completely unknown. The whole point of the abstraction is that we don't have to

know more than is necessary.

a socket on one computer that talks to a socket on another computer creates a

communication channel. A programmer can use that channel to send data between the two

machines. When you send data, each layer of the TCP/IP stack adds appropriate header

information to wrap your data. These headers help the stack get your data to its destination.

The good news is that the Java language hides all of this from you by providing the data to

your code on streams, which is why they are sometimes called streaming sockets.

Think of sockets as handsets on either side of a telephone call -- you and I talk and listen on

our handsets on a dedicated channel. The conversation doesn't end until we decide to hang up

(unless we're using cell phones). And until we hang up, our respective phone lines are busy.

If you need to communicate between two computers without the overhead of higher-level

mechanisms like ORBs (and CORBA, RMI, IIOP, and so on), sockets are for you. The

low-level details of sockets get rather involved. Fortunately, the Java platform gives you some

simple yet powerful higher-level abstractions that make creating and using sockets easy.

Types of sockets

Generally speaking, sockets come in two flavors in the Java language:

* TCP sockets (implemented by the Socket class, which we'll discuss later)

* UDP sockets (implemented by the DatagramSocket class)

TCP and UDP play the same role, but they do it differently. Both receive transport protocol

packets and pass along their contents to the Presentation Layer. TCP divides messages into

packets (datagrams) and reassembles them in the correct sequence at the receiving end. It

also handles requesting retransmission of missing packets. With TCP, the upper-level layers

have much less to worry about. UDP doesn't provide these assembly and retransmission

requesting features. It simply passes packets along. The upper layers have to make sure that

the message is complete and assembled in correct sequence.

In general, UDP imposes lower performance overhead on your application, but only if your

application doesn't exchange lots of data all at once and doesn't have to reassemble lots of

datagrams to complete a message. Otherwise, TCP is the simplest and probably most efficient

choice.

Because most readers are more likely to use TCP than UDP, we'll limit our discussion to the

TCP-oriented classes in the Java language.

4. Servlet
4.1 Introduction

What is Java Servlets?

Servlets are server side components that provide a powerful mechanism for developing server

side programs. Servlets provide component-based, platform-independent methods for building

Web-based applications, without the performance limitations of CGI programs. Unlike

proprietary server extension mechanisms (such as the Netscape Server API or Apache modules),

servlets are server as well as platform-independent. This leaves you free to select a "best of

breed" strategy for your servers, platforms, and tools. Using servlets web developers can create

fast and efficient server side application which can run on any servlet enabled web server.

Servlets run entirely inside the Java Virtual Machine. Since the Servlet runs at server side so it

does not checks the browser for compatibility. Servlets can access the entire family of Java APIs,

including the JDBC API to access enterprise databases. Servlets can also access a library of

HTTP-specific calls, receive all the benefits of the mature java language including portability,

performance, reusability, and crash protection. Today servlets are the popular choice for building

interactive web applications. Third-party servlet containers are available for Apache Web Server,

Microsoft IIS, and others. Servlet containers are usually the components of web and application

servers, such as BEA WebLogic Application Server, IBM WebSphere, Sun Java System Web

Server, Sun Java System Application Server and others.

Servlets are not designed for a specific protocols. It is different thing that they are most

commonly used with the HTTP protocols Servlets uses the classes in the java packages

javax.servlet and javax.servlet.http. Servlets provides a way of creating the sophisticated server

side extensions in a server as they follow the standard framework and use the highly portable

java language.

HTTP Servlet typically used to:

 Priovide dynamic content like getting the results of a database query and returning to the

client.

 Process and/or store the data submitted by the HTML.

 Manage information about the state of a stateless HTTP. e.g. an online shopping car

manages request for multiple concurrent customers.

Introduction to Server Side Programming

All of us (or most of us) would have started programming in Java with the ever famous ―Hello

World!‖ program. If you can recollect, we saved this file with a .java extension and later

compiled the program using javac and then executed the class file with java. Apart from

introducing you to the language basics, the point to be noted about this program is that – ―It is a

client side program‖. This means that you write, compile and also execute the program on a

client machine (e.g. Your PC). No doubt, this is the easiest and fastest way to write, compile and

execute programs. But, it has little practical significance when it comes to real world

programming.

1. Why Server Side Programming?

Though it is technically feasible to implement almost any business logic using client side

programs, logically or functionally it carries no ground when it comes to enterprise

applications (e.g. banking, air ticketing, e-shopping etc.). To further explain, going by the

client side programming logic; a bank having 10,000 customers would mean that each

customer should have a copy of the program(s) in his or her PC which translates to

10,000 programs! In addition, there are issues like security, resource pooling, concurrent

access and manipulations to the database which simply cannot be handled by client side

programs. The answer to most of the issues cited above is – ―Server Side Programming‖.

Figure-1 illustrates Server side architecture in the simplest terms.

2. Advantages of Server Side Programs

The list below highlights some of the important advantages of Server Side programs.

i. All programs reside in one machine called the Server. Any number of remote

machines (called clients) can access the server programs.

ii. New functionalities to existing programs can be added at the server side which the

clients’ can advantage without having to change anything from their side.

iii. Migrating to newer versions, architectures, design patterns, adding patches,

switching to new databases can be done at the server side without having to

bother about clients’ hardware or software capabilities.

iv. Issues relating to enterprise applications like resource management, concurrency,

session management, security and performance are managed by service side

applications.

v. They are portable and possess the capability to generate dynamic and user-based

content (e.g. displaying transaction information of credit card or debit card

depending on user’s choice).

3. Types of Server Side Programs

i. Active Server Pages (ASP)
ii. Java Servlets

iii. Java Server Pages (JSPs)
iv. Enterprise Java Beans (EJBs)
v. PHP

To summarize, the objective of server side programs is to centrally manage all

programs relating to a particular application (e.g. Banking, Insurance, e-shopping,

etc). Clients with bare minimum requirement (e.g. Pentium II, Windows XP

Professional, MS Internet Explorer and an internet connection) can experience the

power and performance of a Server (e.g. IBM Mainframe, Unix Server, etc) from a

remote location without having to compromise on security or speed. More

importantly, server programs are not only portable but also possess the capability to
generate dynamic responses based on user’s request.

Introduction to Java Servlet

Java Servlets are server side Java programs that require either a Web Server or an Application

Server for execution. Examples for Web Servers include Apache’s Tomcat Server and

Macromedia’s JRun. Web Servers include IBM’s Weblogic and BEA’s Websphere server.

Examples for other Server programs include Java Server Pages (JSPs) and Enterprise Java Beans

(EJBs). In the forthcoming sections, we will get acquainted with Servlet fundamentals and other

associated information required for creating and executing Java Servlets.

1. Basic Servlet Structure

As seen earlier, Java servlets are server side programs or to be more specific; web

applications that run on servers that comply HTTP protocol. The javax.servlet and

javax.servlet.http packages provide the necessary interfaces and classes to work with

servlets. Servlets generally extend the HttpServlet class and override the doGet or the

doPost methods. In addition, other methods such as init, service and destroy also called as

life cycle methods might be used which will be discussed in the following section. The

skeleton of a servlet is given in Figure

2. A Servlet’s Life Cycle

The first time a servlet is invoked, it is the init method which is called. And remember

that this is called only once during the lifetime of a servlet. So, you can put all your

initialization code here. This method next calls the service method. The service method in

turn calls the doGet or doPost methods (whichever the user has overridden). Finally, the

servlet calls the destroy method. It is in a sense equivalent to the finally method. You can

reset or close references / connections done earlier in the servlet’s methods (e.g. init,

service or doGet /doPost). After this method is called, the servlet ceases to exist for all

practical purposes. However, please note that it is not mandatory to override all these

methods. More often than not, it is the doGet or doPost method used with one or more of

the other life cycle methods.

4.2 Life cycle of servlet

The life cycle of a servlet can be categorized into four parts:

1. Loading and Inatantiation: The servlet container loads the servlet during startup or

when the first request is made. The loading of the servlet depends on the attribute <load-

on-startup> of web.xml file. If the attribute <load-on-startup> has a positive value then

the servlet is load with loading of the container otherwise it load when the first request

comes for service. After loading of the servlet, the container creates the instances of the

servlet.

2. Initialization: After creating the instances, the servlet container calls the init() method

and passes the servlet initialization parameters to the init() method. The init() must be

called by the servlet container before the servlet can service any request. The

initialization parameters persist untill the servlet is destroyed. The init() method is called

only once throughout the life cycle of the servlet.

The servlet will be available for service if it is loaded successfully otherwise the servlet

container unloads the servlet.

3. Servicing the Request: After successfully completing the initialization process, the

servlet will be available for service. Servlet creates seperate threads for each request. The

sevlet container calls the service() method for servicing any request. The service()

method determines the kind of request and calls the appropriate method (doGet() or

doPost()) for handling the request and sends response to the client using the methods of

the response object.

4. Destroying the Servlet: If the servlet is no longer needed for servicing any request, the

servlet container calls the destroy() method . Like the init() method this method is also

called only once throughout the life cycle of the servlet. Calling the destroy() method

indicates to the servlet container not to sent the any request for service and the servlet

releases all the resources associated with it. Java Virtual Machine claims for the memory

associated with the resources for garbage collection.

 Life Cycle of a Servlet

Methods of Servlets

A Generic servlet contains the following five methods:

init()

public void init(ServletConfig config) throws ServletException

The init() method is called only once by the servlet container throughout the life of a servlet. By

this init() method the servlet get to know that it has been placed into service.

The servlet cannot be put into the service if

 The init() method does not return within a fix time set by the web server.

 It throws a ServletException

Parameters - The init() method takes a ServletConfig object that contains the initialization

parameters and servlet's configuration and throws a ServletException if an exception has

occurred.

service()

public void service(ServletRequest req, ServletResponse res) throws ServletException,

IOException

Once the servlet starts getting the requests, the service() method is called by the servlet container

to respond. The servlet services the client's request with the help of two objects. These two

objects javax.servlet.ServletRequest and javax.servlet.ServletResponse are passed by the

servlet container.

The status code of the response always should be set for a servlet that throws or sends an error.

Parameters - The service() method takes the ServletRequest object that contains the client's

request and the object ServletResponse contains the servlet's response. The service() method

throws ServletException and IOExceptions exception.

getServletConfig()

public ServletConfig getServletConfig()

This method contains parameters for initialization and startup of the servlet and returns a

ServletConfig object. This object is then passed to the init method. When this interface is

implemented then it stores the ServletConfig object in order to return it. It is done by the

generic class which implements this inetrface.

Returns - the ServletConfig object

getServletInfo()

public String getServletInfo()

The information about the servlet is returned by this method like version, author etc. This

method returns a string which should be in the form of plain text and not any kind of markup.

 Returns - a string that contains the information about the servlet

destroy()

public void destroy()

This method is called when we need to close the servlet. That is before removing a servlet

instance from service, the servlet container calls the destroy() method. Once the servlet container

calls the destroy() method, no service methods will be then called . That is after the exit of all the

threads running in the servlet, the destroy() method is called. Hence, the servlet gets a chance to

clean up all the resources like memory, threads etc which are being held.

3. A Servlet Program Demostrating it’s life cycle

Output Screens

To appreciate the execution of the servlet life cycle methods, keep refreshing the browser

(F5 in Windows). In the background, what actually happens is – with each refresh, the

doGet method is called which increments i’s value and displays the current value. Find

below the screen shots (Figures 5 through 7) captured at random intervals. The procedure

to run the servlets using a Web Server will be demonstrated in the next section (1.3.).

How to run a servlet

In this section, we will see as how to install a WebServer, configure it and finally run servlets

using this server. Throughout this tutorial, we will be using Apache’s Tomcat server as the

WebServer. Tomcat is not only an open and free server, but also the most preferred WebServer

across the world. A few reasons we can attribute for its popularity is – Easy to install and

configure, very less memory footprint, fast, powerful and portable. It is the ideal server for

learning purpose.

1. Installation of Tomcat Server and JDK

As mentioned earlier, Apache’s Tomcat Server is free software available for download @
www.apache.org. The current version of Tomcat Server is 6.0 (as of November 2007). This
Server supports Java Servlets 2.5 and Java Server Pages (JSPs) 2.1 specifications. In case of doubt
or confusion, you can refer to the abundant documentation repository available on this site.

Important software required for running this server is Sun’s JDK (Java Development Kit) and JRE
(Java Runtime Environment). The current version of JDK is 6.0. Like Tomcat, JDK is also free and
is available for download at www.java.sun.com.

2. Configuring Tomcat Server

o Set JAVA_HOME variable - You have to set this variable which points to the base
installation directory of JDK installation. (e.g. c:\program file\java\jdk1.6.0). You can
either set this from the command prompt or from My Computer -> Properties ->
Advanced -> Environment Variables.

o Specify the Server Port – You can change the server port from 8080 to 80 (if you wish to)
by editing the server.xml file in the conf folder. The path would be something like this –
c:\program files\apache software foundation\tomcat6\conf\server.xml

3. Run Tomcat Server

Once the above pre-requisites are taken care, you can test as whether the server is successfully
installed as follows:

Step 1

• Go to C:\Program Files\Apache Software Foundation\Tomcat 6.0\bin and double click on
tomcat6

OR

• Go to Start->Programs->Apache Tomcat 6.0 -> Monitor Tomcat. You will notice an icon appear
on the right side of your Status Bar. Right click on this icon and click on Start service.

Step 2

http://www.apache.org/
http://www.java.sun.com/

• Open your Browser (e.g. MS Internet Explorer) and type the following URL :

http://localhost/ (If you have changed to port # to 80)

OR

• Open your Browser (e.g. MS Internet Explorer) and type the following URL :

http://localhost:8080/ (If you have NOT changed the default port #)

In either case, you should get a page similar to the one in Figure-8 which signifies that the
Tomcat Server is successfully running on your machine.

4. Compile and Execute your Servlet

This section through a step by step (and illustration) approach explains as how to compile and
then run a servlet using Tomcat Server. Though this explanation is specific to Tomcat, the
procedure explained holds true for other Web servers too (e.g. JRun, Caucho’s Resin).

Step 1 – Compile your servlet program

The first step is to compile your servlet program. The procedure is no different from that of
writing and compiling a java program. But, the point to be noted is that neither the
javax.servlet.* nor the javax.servlet.http.* is part of the standard JDK. It has to be exclusively
added in the CLASSPATH. The set of classes required for writing servlets is available in a jar file
called servlet-api.jar. This jar file can be downloaded from several sources. However, the easiest
one is to use this jar file available with the Tomcat server (C:\Program Files\Apache Software
Foundation\Tomcat 6.0\lib\servlet-api.jar). You need to include this path in CLASSPATH. Once
you have done this, you will be able to successfully compile your servlet program. Ensure that
the class file is created successfully.

Step 2 – Create your Web application folder

The next step is to create your web application folder. The name of the folder can be any valid
and logical name that represents your application (e.g. bank_apps, airline_tickets_booking,
shopping_cart,etc). But the most important criterion is that this folder should be created under
webapps folder. The path would be similar or close to this - C:\Program Files\Apache Software
Foundation\Tomcat 6.0\webapps. For demo purpose, let us create a folder called demo-
examples under the webapps folder.

Figure- depicts the same.

Step 3 – Create the WEB-INF folder

The third step is to create the WEB-INF folder. This folder should be created under your web
application folder that you created in the previous step. Figure-10 shows the WEB-INF folder
being placed under the demo-examples folder.

Figure – WEB-INF folder inside web application folder

Step 4 – Create the web.xml file and the classes folder

The fourth step is to create the web.xml file and the classes folder. Ensure that the web.xml and
classes folder are created under the WEB-INF folder. Figure-11 shows this file and folder being
placed under the WEB-INF folder.

Figure – web.xml file and the classes folder

Note – Instead of creating the web.xml file an easy way would be to copy an existing web.xml
file (e.g. C:\Program Files\Apache Software Foundation\Tomcat 6.0\webapps\examples\WEB-
INF) and paste it into this folder. You can later edit this file and add relevant information to your

web application.

Step 5 – Copy the servlet class to the classes folder

We need to copy the servlet class file to the classes folder in order to run the servlet that we
created. All you need to do is copy the servlet class file (the file we obtained from Step 1) to this
folder. Figure-12 shows the servlet_lifecycle (refer section 1.2.3.) class being placed in the
classes folder.

Figure – servlet class file placed under classes folder

Step 6 – Edit web.xml to include servlet’s name and url pattern

This step involves two actions viz. including the servlet’s name and then mentioning the url
pattern. Let us first see as how to include the servlet’s name in the web.xml file. Open the
web.xml file and include the servlet’s name as shown in Figure-13.

Figure– Include servlet’s name using the <servlet> </servlet> tag

Note – The servlet-name need not be the same as that of the class name. You can give a
different name (or alias) to the actual servlet. This is one of the main reasons as why this tag is

used for.

Next, include the url pattern using the <servlet-mapping> </servlet-mapping> tag. The url
pattern defines as how a user can access the servlet from the browser. Figure-14 shows the url
pattern entry for our current servlet.

Figure – Include url-pattern using the <servlet-mapping> </servlet-mapping> tag

Note – Please remember that the path given in the url-pattern is a relative path. This means that
this path is w.r.t. your web applications folder (demo-examples in this case).

Step 7 – Run Tomcat server and then execute your Servlet

This step again involves two actions viz. running the Web Server and then executing the servlet.
To run the server, follow the steps explained in Section 1.3.3.

After ensuring that the web server is running successfully, you can run your servlet. To do this,
open your web browser and enter the url as specified in the web.xml file. The complete url that
needs to be entered in the browser is:

http://localhost/demo-examples/servlet_lifecycle

Figure – Our servlet’s output!

4.3 Types of servlet

There are two types of servlets, GenericServlet and HttpServlet. GenericServlet defines the

generic or protocol independent servlet. HttpServlet is subclass of GenericServlet and provides

some http specific functionality like doGet and doPost methods.

HttpServlet Provides an abstract class to be subclassed to create an HTTP servlet suitable for a

Web site. A subclass of HttpServlet must override at least one method, usually one of these:

 doGet, if the servlet supports HTTP GET requests

 doPost, for HTTP POST requests

 doPut, for HTTP PUT requests

 doDelete, for HTTP DELETE requests

 init and destroy, to manage resources that are held for the life of the servlet

 getServletInfo, which the servlet uses to provide information about itself

There's almost no reason to override the service method. service handles standard HTTP

requests by dispatching them to the handler methods for each HTTP request type (the doXXX

methods listed above). Likewise, there's almost no reason to override the doOptions and

doTrace methods.

GenericServlet defines a generic, protocol-independent servlet. To write an HTTP servlet for

use on the Web, extend HttpServlet instead.

GenericServlet implements the Servlet and ServletConfig interfaces. GenericServlet

may be directly extended by a servlet, although it's more common to extend a protocol-specific

subclass such as HttpServlet.

GenericServlet makes writing servlets easier. It provides simple versions of the lifecycle

methods init and destroy and of the methods in the ServletConfig interface.

GenericServlet also implements the log method, declared in the ServletContext interface.

../Servlet/Servlet%20Interview,servlet%20questions,Servlet%20Interview%20Questions,Servlet.htm

To write a generic servlet, you need only override the abstract service method.

4.4 Session Tracking

As we know that the Http is a stateless protocol, means that it can't persist the information. It

always treats each request as a new request. In Http client makes a connection to the server,

sends the request. gets the response, and closes the connection.

In session management client first make a request for any servlet or any page, the container

receives the request and generate a unique session ID and gives it back to the client along with

the response. This ID gets stores on the client machine. Thereafter when the client request again

sends a request to the server then it also sends the session Id with the request. There the container

sees the Id and sends back the request.

Session Tracking can be done in three ways:

1. Hidden Form Fields: This is one of the way to support the session tracking. As we know

by the name, that in this fields are added to an HTML form which are not displayed in the

client's request. The hidden form field are sent back to the server when the form is

submitted. In hidden form fields the html entry will be like this : <input type ="hidden"

name = "name" value="">. This means that when you submit the form, the specified

name and value will be get included in get or post method. In this session ID information

would be embedded within the form as a hidden field and submitted with the Http POST

command.

2. URL Rewriting: This is another way to support the session tracking. URLRewriting

can be used in place where we don't want to use cookies. It is used to maintain the

session. Whenever the browser sends a request then it is always interpreted as a new

request because http protocol is a stateless protocol as it is not persistent. Whenever we

want that out request object to stay alive till we decide to end the request object then,

there we use the concept of session tracking. In session tracking firstly a session object is

created when the first request goes to the server. Then server creates a token which will

be used to maintain the session. The token is transmitted to the client by the response

object and gets stored on the client machine. By default the server creates a cookie and

the cookie get stored on the client machine.

3. Cookies: When cookie based session management is used, a token is generated which

contains user's information, is sent to the browser by the server. The cookie is sent back

to the server when the user sends a new request. By this cookie, the server is able to

identify the user. In this way the session is maintained. Cookie is nothing but a name-

value pair, which is stored on the client machine. By default the cookie is implemented in

most of the browsers. If we want then we can also disable the cookie. For security

reasons, cookie based session management uses two types of cookies.

Program To Determine whether the Session is New or Old

In this program we are going to make one servlet on session in which we will check whether the

session is new or old.

To make this program firstly we need to make one class named CheckingTheSession. Inside

the doGet() method, which takes two objects one of request and second of response. Inside this

method call the method getWriter() of the response object. Use getSession() of the request

object, which returns the HttpSession object. Now by using the HttpSession we can find out

whether the session is new or old.

The code of the program is given below:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CheckingTheSession extends HttpServlet{

 protected void doGet(HttpServletRequest request, HttpServletResponse respon

se)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter pw = response.getWriter();

 pw.println("Checking whether the session is new or old
");

 HttpSession session = request.getSession();

 if(session.isNew()){

 pw.println("You have created a new session");

 }

 else{

 pw.println("Session already exists");

 }

 }

}

4.5 Cookie class

Cookies are state objects stored by a Web browser (or other HTTP client) and can be used by server-side
applications to store and retrieve information. Cookies can be created by servlets (or CGI scripts) and
sent to the browser. For every subsequent request made by the browser, the cookie is sent as part of
the HTTP request. This allows server-side applications to access state information, without the effort of
encoding it in a hyperlink or HTML form. Figure 1 shows an example transaction between a server-side
application and a browser where a cookie is stored and then returned.

Storing cookies from a Java servlet

Support for cookies has been included in the Servlet API and provides an extremely easy

interface for storing and retrieving cookies. Cookies are represented by the

javax.servlet.http.Cookie

class. The constructor takes two strings as parameters — the name of the cookie (which is fixed)

and the value (which can be changed at a later date).

// Create a new cookie

Cookie myCookie = new Cookie ("accountID" , "212994234");

Servlets that wish to set cookies must add their cookie to the response sent back to the browser.

HttpServletResponse

offers an

addCookie(Cookie)

method, which can be invoked once or multiple times to add additional cookies.

public void doGet(HttpServletRequest req, HttpServletResponse res)

{

 // Store state information in browser cookies

 res.addCookie (new Cookie ("thecounter", "1");

 // Additional servlet code would go here.....

}

Reading cookies from a Java servlet

Accessing stored cookies from a servlet is also easy. Cookies are sent each time a request is

made, so that if a cookie is already stored in the browser, it can be accessed by invoking the

Cookies[] getCookies()

method of

javax.servlet.http.HttpServletRequest

. This returns an array of Cookie objects, or

Null

if no cookies are present.

// Get cookie array from HttpServletRequest

Cookie[] cookieArray = request.getCookies();

// Guard statement to check for missing cookies

if (cookieArray != null)

{

 // Print a list of all cookies sent by browser

 for (int i =0; i< cookieArray.length; i++)

 {

 Cookie c = cookieArray[i];

 pout.println ("Name : " + c.getName());

 pout.println ("Value: " + c.getValue());

 }

}

else

pout.println ("No cookies present, or browser does not support cookies");

4.6 Servlet- Jdbc

Accessing Access Database From Servlet

import java.io.*;

import java.util.Enumeration;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import java.net.*;

public class emaildb extends HttpServlet{

 Connection theConnection;

 private ServletConfig config;

public void init(ServletConfig config)

 throws ServletException{

 this.config=config;

 }

public void service (HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

 HttpSession session = req.getSession(true);

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><HEAD><TITLE>Emai

List.</TITLE>");

 out.println("</HEAD>");

 out.println("<BODY bgColor=blanchedalmond

text=#008000 topMargin=0>");

 out.println("<P align=center><FONT

face=Helvetica><FONT color=fuchsia

style=\"BACKGROUND-COLOR: white\"><BIG><BIG>List of

E-mail addresses.</BIG></BIG></P>");

 out.println("<P align=center>");

out.println("<TABLE align=center border=1

cellPadding=1 cellSpacing=1 width=\"75%\">");

 out.println("<TR>");

 out.println("<TD>Name</TD>");

 out.println("<TD>E-mail</TD>");

 out.println("<TD>Website</TD></TR>");

try{

 //Loading Sun's JDBC ODBC Driver

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Connect to emaildb Data source

 theConnection =

DriverManager.getConnection("jdbc:odbc:emaildb",

"admin", "");

 Statement

theStatement=theConnection.createStatement();

 ResultSet

theResult=theStatement.executeQuery("select * from

emaillists"); //Select all records from emaillists

table.

 //Fetch all the records and print in table

 while(theResult.next()){

 out.println();

 out.println("<TR>");

 out.println("<TD>" + theResult.getString(1) +

"</TD>");

 out.println("<TD>" + theResult.getString(2) +

"</TD>");

 String s=theResult.getString(3);

 out.println("<TD>" + s +

"</TD>");

 out.println("</TR>");

 }

 theResult.close();//Close the result set

 theStatement.close();//Close statement

 theConnection.close(); //Close database Connection

 }catch(Exception e){

 out.println(e.getMessage());//Print trapped

error.

 }

 out.println("</TABLE></P>");

 out.println("<P> </P></BODY></HTML>");

 }

 public void destroy(){

 }

}

Compile emaildb.java file, move emaildb.class file to Java Web Servers servlets directory and register the

servlet. Now open your browser and run the servlet.

4.Introduction to JSP

Java Server Pages or JSP for short is Sun's solution for developing dynamic web sites. JSP

provide excellent server side scripting support for creating database driven web applications. JSP

enable the developers to directly insert java code into jsp file, this makes the development

process very simple and its maintenance also becomes very easy. JSP pages are efficient, it

loads into the web servers memory on receiving the request very first time and the subsequent

calls are served within a very short period of time.

 In today's environment most web sites servers dynamic pages based on user request. Database

is very convenient way to store the data of users and other things. JDBC provide excellent

database connectivity in heterogeneous database environment. Using JSP and JDBC its very easy

to develop database driven web application.

 Java is known for its characteristic of "write once, run anywhere." JSP pages are platform

independent. Your port your .jsp pages to any platform.

To process a JSP file, we need a JSP engine that can be connected with a web server or can be

accommodated inside a web server. Firstly when a web browser seeks a JSP file through an URL

from the web server, the web server recognizes the .jsp file extension in the URL requested by

the browser and understands that the requested resource is a JavaServer Page. Then the web

server passes the request to the JSP engine. The JSP page is then translated into a Java class,

which is then compiled into a servlet.

This translation and compilation phase occurs only when the JSP file is requested for the first

time, or if it undergoes any changes to the extent of getting retranslated and recompiled. For each

additional request of the JSP page thereafter, the request directly goes to the servlet byte code,

which is already in memory. Thus when a request comes for a servlet, an init() method is called

when the Servlet is first loaded into the virtual machine, to perform any global initialization that

every request of the servlet will need. Then the individual requests are sent to a service() method,

where the response is put together. The servlet creates a new thread to run service() method for

each request. The request from the browser is converted into a Java object of type

HttpServletRequest, which is passed to the Servlet along with an HttpServletResponse object

that is used to send the response back to the browser. The servlet code performs the operations

specified by the JSP elements in the .jsp file.

How JSP and JSP Container function

A JSP page is executed in a JSP container or a JSP engine, which is installed in a web server or

in a application server. When a client asks for a JSP page the engine wraps up the request and

delivers it to the JSP page along with a response object. The JSP page processes the request and

modifies the response object to incorporate the communication with the client. The container or

the engine, on getting the response, wraps up the responses from the JSP page and delivers it to

the client. The underlying layer for a JSP is actually a servlet implementation. The abstractions

of the request and response are the same as the ServletRequest and ServletResponse respectively.

If the protocol used is HTTP, then the corresponding objects are HttpServletRequest and

HttpServletResponse.

The first time the engine intercepts a request for a JSP, it compiles this translation unit (the JSP

page and other dependent files) into a class file that implements the servlet protocol. If the

dependent files are other JSPs they are compiled into their own classes. The servlet class

generated at the end of the translation process must extend a superclass that is either

1. specified by the JSP author through the use of the extends attribute in the page directive or

2. is a JSP container specific implementation class that implements javax.servlet.jsp.JspPage

interface and provides some basic page specific behavior.

Since most JSP pages use HTTP, their implementation classes must actually implement the

javax.servlet.jsp.HttpJspPage interface, which is a sub interface of javax.servlet.jsp.JspPage.

The javax.servlet.jsp.JspPage interface contains two methods:

1. public void jspInit() - This method is invoked when the JSP is initialized and the page authors

are free to provide initialization of the JSP by implementing this method in their JSPs.

2. public void jspDestroy() - This method is invoked when the JSP is about to be destroyed by

the container. Similar to above, page authors can provide their own implementation.

The javax.servlet.jsp.HttpJspPage interface contains one method:

public void _jspService(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException

This method generated by the JSP container is invoked, every time a request comes to the JSP.

The request is processed and the JSP generates appropriate response. This response is taken by

the container and passed back to the client.

JSP Architecture

There are two basic ways of using the JSP technology. They are the client/server (page-centric)

2-tier approach and the N-tier approach (dispatcher).

The Page-Centric Approach

Applications built using a client-server (2-tier) approach consist of one or more application

programs running on client machines and connecting to a server-based application to work. With

the arrival of Servlets technology, 2-tier applications could also be developed using Java

programming language. This model allows JSPs or Servlets direct access to some resource such

as database or legacy application to service a client's request. The JSP page is where the

incoming request is intercepted, processed and the response sent back to the client. JSPs differ

from Servlets in this scenario by providing clean code, separating code from the content by

placing data access in EJBs. Even though this model makes application development easier, it

does not scale up well for a large number of simultaneous clients as it entails a significant

amount of request processing to be performed and each request must establish or share a

potentially scarce/expensive connection to the resource in question.

Page-view - This basic architecture involves direct request invocations to a server page with

embedded Java code, and markup tags which dynamically generate output for substitution within

the HTML. This approach has been blessed a number of benefits. It is very straightforward and is

a low-overhead approach from a developerment perspective. All the Java code may be embedded

within the HTML, so changes are confined to a very limited area, reducing complexity

drastically.

The big trade-off here is in the level of sophistication. As the scale of the system grows, some

limitations begin to surface, such as bloating of business logic code in the page instead of

factoring forward to a mediating Servlet or factoring back to a worker bean. It is a fact that

utilizing a Servlet and helper beans helps to separate developer roles more cleanly and improves

the potential for code reuse.

Page-view with bean - This pattern is used when the above architecture becomes too cluttered

with business-related code and data access code. The Java code representing the business logic

and simple data storage implementation in the previous model moves from the JSP to the

JavaBean worker. This refactoring leaves a much cleaner JSP with limited Java code, which can

be comfortably owned by an individual in a web-production role, since it encapsulates mostly

markup tags.

The Dispatcher Approach

In this approach, a Servlet or JSP acts as a mediator or controller, delegating requests to JSP

pages and JavaBeans. There are three different architectures. They are mediator-view, mediator-

composite view and service to workers.

In an N-tier application, the server side of the architecture is broken up into multiple tiers. In this

case, the application is composed of multiple tiers, where the middle tier, the JSP, interacts with

the back end resources via another object or EJBs component. The Enterprise JavaBeans server

and the EJB provide managed access to resources, support transactions and access to underlying

security mechanisms, thus addressing the resource sharing and performance issues of the 2-tier

approach.

The first step in N-tiered application design should be identifying the correct objects and their

interaction and the second step is identifying the JSPs or Servlets. These are divided into two

categories.

Front end JSPs or Servlets manage application flow and business logic evaluation. They act as a

point to intercept the HTTP requests coming from the users. They provide a single entry point to

an application, simplifying security management and making application state easier to maintain.

Presentation JSPs or Servlets generate HTML or XML with their main purpose in life being

presentation of dynamic content. They contain only presentation and rendering logic.

These categories resemble to the Modal-View design pattern, where the front-end components is

the model and the presentation component the view. In this approach, JSPs are used to generate

the presentation layer and either JSPs or Servlets to perform process-intensive tasks. The front-

end component acts as the controller and is in charge of the request processing and the creation

of any beans or objects used by the presentation JSP, as well as deciding, depending on the user's

actions, which JSP to forward this request to. There is no processing logic within the

presentation JSP itself and it simply responsible for retrieving any objects or beans that may have

been previously created by the Servlet and extracting the dynamic content for insertion within

static templates.

Benefits of JSP

One of the main reasons why the JavaServer Pages technology has evolved into what it is today

and it is still evolving is the overwhelming technical need to simplify application design by

separating dynamic content from static template display data. Another benefit of utilizing JSP is

that it allows to more cleanly separate the roles of web application/HTML designer from a

software developer. The JSP technology is blessed with a number of exciting benefits, which are

chronicled as follows:

1. The JSP technology is platform independent, in its dynamic web pages, its web servers, and its

underlying server components. That is, JSP pages perform perfectly without any hassle on any

platform, run on any web server, and web-enabled application server. The JSP pages can be

accessed from any web server.

2. The JSP technology emphasizes the use of reusable components. These components can be

combined or manipulated towards developing more purposeful components and page design.

This definitely reduces development time apart from the At development time, JSPs are very

different from Servlets, however, they are precompiled into Servlets at run time and executed by

a JSP engine which is installed on a Web-enabled application server such as BEA WebLogic and

IBM WebSphere.

7.1 Components of JSP – Directives , Tags, Scripting Elements

JSP page is built using components such as :

5. Directives
6. Declarations
7. Scriplets

8. Expressions
9. Standard Actions
10. Custom Tags

 Directives :

JSP directives serve as messages to the JSP container from the JSP. They are used to set global

values such as class declaration, methods to be implemented, output content type, etc. They do

not produce any output to the client. All directives have scope of the entire JSP file. That is, a

directive affects the whole JSP file, and only that JSP file. Directives are characterized by the @

character within the tag .

 Listing some of them:

1) Page

 Syntax : < %@ page Language=‖Java‖ extends=‖<Class name>‖ import=‖<class> or <package>‖ %>

Attributes:

a. Language = ―Java‖

b. Import = ―Class‖

c. Buffersize = ―‖

d. Scope = ―REQUEST/PAGE/SESSION/APPLICATION‖

e. And etc….

Page directive is aimed to define certain attribute of a JSP page for e.g. Language of the

page in which the page content should be written , which class to be imported so that it

can be used within the JSP page.

2) Include

 Syntax: <%@ include file=‖<filename>‖ %>

Attributes:

a. file = ―<filename>‖

This directive is to include the a HTML, JSP or Sevlet file into a JSP file. This is a static

inclusion of file i.e. it will be included into the JSP file at the time of compilation and

once the JSP file is compiled any changes in the included the file will not the reflected.

 Declarations:

A declaration is a block of Java code in a JSP that is used to define class-wide variables and

methods in the generated class file. Declarations are initialized when the JSP page is initialized

and have class scope. Anything defined in a declaration is available throughout the JSP, to other

declarations, expressions or code

JSP Declaratives begins with <%! and ends %> with .We can embed any amount of java code in

the JSP Declaratives. Variables and functions defined in the declaratives are class level and can

be used anywhere in the JSP page.

 Syntax: <%! Declare all the variables here %>

 Scriplets:

A scriptlet consists of one or more valid Java statements. A scriptlet is a block of Java code that

is executed at request-processing time. A scriptlet is enclosed between "<%" and "%>". What the

scriptlet actually does depends on the code, and it can produce output into the output stream to

the client. Multiple scriptlets are combined in the compiled class in the order in which they

appear in the JSP. Scriptlets like any other Java code block or method, can modify objects inside

them as a result of method invocations.

JSP Scriptlets begins with <% and ends %> .We can embed any amount of java code in the JSP

Scriptlets. JSP Engine places these code in the _jspService() method.

 Syntax: <% All your scripts will come here %>

Expressions:

An expression is a shorthand notation for a scriptlet that outputs a value in the response stream

back to the client. When the expression is evaluated, the result is converted to a string and

displayed, An expression is enclosed within <%= and %> "<%=" and "%>". If any part of

expression is an object, the conversion is done using the toString() method of the object.

 Syntax: <%= expression evaluation and display the variable %>

Standard Action:

What is JSP Actions?

Standard actions are specific tags that affect the runtime behavior of the JSP and affect the

response sent back to the client. The JSP specification lists some standard action types to be

provided by all containers, irrespective of the implementation. Standard actions provide page

authors with some basic functionality to exploit; the vendor is free to provide other actions to

enhance behavior.

Servlet container provides many built in functionality to ease the development of the

applications. Programmers can use these functions in JSP applications. The JSP Actions tags

enables the programmer to use these functions. The JSP Actions are XML tags that can be used

in the JSP page.

Here is the list of JSP Actions:

 jsp:include
The jsp:include action work as a subroutine, the Java servlet temporarily passes the

request and response to the specified JSP/Servlet. Control is then returned back to the

current JSP page.

 jsp:param

The jsp:param action is used to add the specific parameter to current request. The

jsp:param tag can be used inside a jsp:include, jsp:forward or jsp:params block.

 jsp:forward

The jsp:forward tag is used to hand off the request and response to another JSP or

servlet. In this case the request never return to the calling JSP page.

 jsp:plugin

In older versions of Netscape Navigator and Internet Explorer; different tags is used to

embed applet. The jsp:plugin tag actually generates the appropriate HTML code the

embed the Applets correctly.

 jsp:fallback

The jsp:fallback tag is used to specify the message to be shown on the browser if applets

is not supported by browser.

Example:

 <jsp:fallback>

 <p>Unable to load applet</p>

 </jsp:fallback>

 jsp:getProperty
The jsp:getPropertyB is used to get specified property from the JavaBean object.

 jsp:setProperty

The jsp:setProperty tag is used to set a property in the JavaBean object.

 jsp:useBean

The jsp:useBean tag is used to instantiate an object of Java Bean or it can re-use

existing java bean object.

Custom Tags:

 taglib

Syntax: <%@ taglib uri=‖<tag library uri>‖ prefix=‖<tagprefix>‖ %>

Attributes:

a. uri = ―<relative path of the tag library uri>‖

b. prefix = ―<tagprefix>‖

prefix is alias name for the tag library name.

 JSP provides certain Implicit Objects listed below.

Object Of Kind

Out JSP writer

Request HttpServletRequest

Response HttpServletRespose

Session HttpSession

Application ServletContext

Config Sevlet Config

Page Object

PageContext Page Context => is responsible

for generating all other implicit

objects.

 Out:

This object is instantiated implicitly from JSP Writer class and can be used for displaying

anything within delimiters.

For e.g. out.println(―Hi Buddy‖);

 Request:

It is also an implicit object of class HttpServletRequest class and using this object request

parameters can be accessed.

For e.g. in case of retrieval of parameters from last form is as follows:

request.getParameters(―Name‖);

Where ―Name‖ is the form element.

 Response:

It is also an implicit object of class HttpServletResponse class and using this object response(sent

back to browser) parameters can be modified or set.

For e.g. in case of modifying the HTTP headers you can use this object.

 Response.setBufferSize(―50‖);

Session:

Session object is of class HttpSession and used to maintain the session information. It stores the

information in Name-Value pair.

For e.g.

 session.setValue(―Name‖,‖Jakes‖);

 session.setValue(―Age‖,‖22‖);

 Application:

This object belongs to class SevletContext and used to maintain certain information throughout

the scope of Application.

For e.g.

 Application.setValue(―servername‖,‖www.myserver.com‖);

 PageContext:

This object is of class pageContext and is utilized to access the other implicit objects.

7.2 Building a simple application using JSP

This simple page contains a JSP program and it's output on browser in running state. This given

program of JSP illustrates you how to print simple "Hello World!" string on the browser through

the server side code (provided by JSP).

This program also contains HTML (Hypertext Markup Language) code for designing the page

and the contents. Following code of the program prints the string "Hello World!" by using

<%="Hello World!" %> while you can also print the string by using out.println("Hello

World!") in the <% and %> JSP tags.

Here is the code of the program:

<html>

 <head><title>Hello World JSP Page.</title></head>

 <body>

 <%="Hello World!" %>

 </body>

</html>

Output of the program:

2. MultiThreading

2.1 Threading basics

Process

A process is an instance of a computer program that is executed sequentially. It is a collection of

instructions which are executed simultaneously at the rum time. Thus several processes may be

associated with the same program. For example, to check the spelling is a single process in the

Word Processor program and you can also use other processes like printing, formatting,

drawing, etc. associated with this program.

Thread

A thread is a lightweight process which exist within a program and executed to perform a

special task. Several threads of execution may be associated with a single process. Thus a

process that has only one thread is referred to as a single-threaded process, while a process with

multiple threads is referred to as a multi-threaded process.

In Java Programming language, thread is a sequential path of code execution within a program.

Each thread has its own local variables, program counter and lifetime. In single threaded runtime

environment, operations are executes sequentially i.e. next operation can execute only when the

previous one is complete. It exists in a common memory space and can share both data and code

of a program. Threading concept is very important in Java through which we can increase the

speed of any application. You can see diagram shown below in which a thread is executed along

with its several operations with in a single process.

Main Thread

When any standalone application is running, it firstly execute the main() method runs in a one

thread, called the main thread. If no other threads are created by the main thread, then program

terminates when the main() method complete its execution. The main thread creates some other

threads called child threads. The main() method execution can finish, but the program will keep

running until the all threads have complete its execution.

2.2 Life cycle of thread

When you are programming with threads, understanding the life cycle of thread is very valuable.

While a thread is alive, it is in one of several states. By invoking start() method, it doesn’t mean

that the thread has access to CPU and start executing straight away. Several factors determine

how it will proceed.

Different states of a thread are:

1. New state – After the creations of Thread instance the thread is in this state but before

the start() method invocation. At this point, the thread is considered not alive.

2. Runnable (Ready-to-run) state – A thread start its life from Runnable state. A thread

first enters runnable state after the invoking of start() method but a thread can return to

this state after either running, waiting, sleeping or coming back from blocked state also.

On this state a thread is waiting for a turn on the processor.

3. Running state – A thread is in running state that means the thread is currently executing.

There are several ways to enter in Runnable state but there is only one way to enter in

Running state: the scheduler select a thread from runnable pool.

4. Dead state – A thread can be considered dead when its run() method completes. If any

thread comes on this state that means it cannot ever run again.

5. Blocked - A thread can enter in this state because of waiting the resources that are hold

by another thread.

Different states implementing Multiple-Threads are:

As we have seen different states that may be occur with the single thread. A running thread can

enter to any non-runnable state, depending on the circumstances. A thread cannot enters directly

to the running state from non-runnable state, firstly it goes to runnable state. Now lets understand

the some non-runnable states which may be occur handling the multithreads.

 Sleeping – On this state, the thread is still alive but it is not runnable, it might be return to

runnable state later, if a particular event occurs. On this state a thread sleeps for a

specified amount of time. You can use the method sleep() to stop the running state of a

thread.

 static void sleep(long millisecond) throws InterruptedException

 Waiting for Notification – A thread waits for notification from another thread. The

thread sends back to runnable state after sending notification from another thread.

 final void wait(long timeout) throws InterruptedException

 final void wait(long timeout, int nanos) throws InterruptedException

 final void wait() throws InterruptedException

 Blocked on I/O – The thread waits for completion of blocking operation. A thread can

enter on this state because of waiting I/O resource. In that case the thread sends back to

runnable state after availability of resources.

 Blocked for joint completion – The thread can come on this state because of waiting the

completion of another thread.

 Blocked for lock acquisition – The thread can come on this state because of waiting to

acquire the lock of an object.

 Methods that can be applied apply on a Thread:

Some Important Methods defined in java.lang.Thread are shown in the table:

 Method
 Return

Type
 Description

 currentThread() Thread
 Returns an object reference to the thread in which it is

invoked.

 getName() String Retrieve the name of the thread object or instance.

 start() void Start the thread by calling its run method.

 run() void
 This method is the entry point to execute thread, like the

main method for applications.

 sleep() void
 Suspends a thread for a specified amount of time (in

milliseconds).

 isAlive() boolean
 This method is used to determine the thread is running or

not.

 activeCount() int
 This method returns the number of active threads in a

particular thread group and all its subgroups.

 interrupt() void The method interrupt the threads on which it is invoked.

 yield() void
 By invoking this method the current thread pause its

execution temporarily and allow other threads to execute.

 join() void

 This method and join(long millisec) Throws

InterruptedException. These two methods are invoked on

a thread. These are not returned until either the thread has

completed or it is timed out respectively.

2.3 Creating Threads

In Java, an object of the Thread class can represent a thread. Thread can be implemented through

any one of two ways:

 Extending the java.lang.Thread Class

 Implementing the java.lang.Runnable Interface

I. Extending the java.lang.Thread Class

For creating a thread a class have to extend the Thread Class. For creating a thread by this

procedure you have to follow these steps:

1. Extend the java.lang.Thread Class.

2. Override the run() method in the subclass from the Thread class to define the code

executed by the thread.

3. Create an instance of this subclass. This subclass may call a Thread class constructor by

subclass constructor.

4. Invoke the start() method on the instance of the class to make the thread eligible for

running.

The following program demonstrates a single thread creation extending the "Thread"

Class:

class MyThread extends Thread{

 String s=null;

 MyThread(String s1){

 s=s1;

 start();

 }

 public void run(){

 System.out.println(s);

 }

}

public class RunThread{

 public static void main(String args[]){

 MyThread m1=new MyThread("Thread started....");

 }

}

 Output of the Program is :

C:\j2se6\thread>javac

RunThread.java

C:\j2se6\thread>java RunThread

Thread started....

II. Implementing the java.lang.Runnable Interface

The procedure for creating threads by implementing the Runnable Interface is as follows:

1. A Class implements the Runnable Interface, override the run() method to define the

code executed by thread. An object of this class is Runnable Object.

2. Create an object of Thread Class by passing a Runnable object as argument.

3. Invoke the start() method on the instance of the Thread class.

The following program demonstrates the thread creation implenting the Runnable

interface:

class MyThread1 implements Runnable{

 Thread t;

 String s=null;

 MyThread1(String s1){

 s=s1;

 t=new Thread(this);

 t.start();

 }

 public void run(){

 System.out.println(s);

 }

}

public class RunableThread{

 public static void main(String args[]){

 MyThread1 m1=new MyThread1("Thread started....");

 }

}

However, this program returns the output same as of the output generated through the previous

program.

Output of the Program is:

C:\j2se6\thread>javac

RunableThread.java

C:\j2se6\thread>java RunableThread

Thread started....

There are two reasons for implementing a Runnable interface preferable to extending the Thread

Class:

1. If you extend the Thread Class, that means that subclass cannot extend any other Class,

but if you implement Runnable interface then you can do this.

2. The class implementing the Runnable interface can avoid the full overhead of Thread

class which can be excessive.

 join() & isAlive() methods:

The following program demonstrates the join() & isAlive() methods:
class DemoAlive extends Thread {

 int value;

 public DemoAlive(String str){

 super(str);

 value=0;

 start();

 }

 public void run(){

 try{

 while (value < 5){

 System.out.println(getName() + ": " + (value++));

 Thread.sleep(250);

 }

 } catch (Exception e) {}

 System.out.println("Exit from thread: " + getName());

 }

}

public class DemoJoin{

 public static void main(String[] args){

 DemoAlive da = new DemoAlive("Thread a");

 DemoAlive db = new DemoAlive("Thread b");

 try{

 System.out.println("Wait for the child threads to finish.");

 da.join();

 if (!da.isAlive())

 System.out.println("Thread A not alive.");

 db.join();

 if (!db.isAlive())

 System.out.println("Thread B not alive.");

 } catch (Exception e) { }

 System.out.println("Exit from Main Thread.");

 }

}

Output of this program is:

C:\j2se6\thread>javac

DemoJoin.java

C:\j2se6\thread>java

DemoJoin

Wait for the child threads

to finish.

Thread a: 0

Thread b: 0

Thread a: 1

Thread b: 1

Thread a: 2

Thread b: 2

Thread a: 3

Thread b: 3

Thread a: 4

Thread b: 4

Exit from thread: Thread

a

Thread A not alive.

Exit from thread: Thread

b

Thread B not alive.

Exit from Main Thread.

C:\j2se6\thread>

Creation of Multiple Threads

Like creation of a single thread, You can also create more than one thread (multithreads) in a

program using class Thread or implementing interface Runnable.

Let’s see an example having the implementation of the multithreads by extending Thread Class:

 class MyThread extends Thread{

 MyThread(String s){

 super(s);

 start();

 }

 public void run(){

 for(int i=0;i<5;i++){

 System.out.println("Thread Name :"

 +Thread.currentThread().getName());

 try{

 Thread.sleep(1000);

 }catch(Exception e){}

 }

 }

}

 public class MultiThread1{

 public static void main(String args[]){

 System.out.println("Thread Name :"

 +Thread.currentThread().getName());

 MyThread m1=new MyThread("My Thread 1");

 MyThread m2=new MyThread("My Thread 2");

 }

}

Output of the Program

C:\nisha>javac

MultiThread1.java

C:\nisha>java MultiThread1

Thread Name :main

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

In this program, two threads are created along with the "main" thread. The currentThread()

method of the Thread class returns a reference to the currently executing thread and the

getName() method returns the name of the thread. The sleep() method pauses execution of the

current thread for 1000 milliseconds(1 second) and switches to the another threads to execute it.

At the time of execution of the program, both threads are registered with the thread scheduler

and the CPU scheduler executes them one by one.

Now, lets create the same program implenting the Runnable interface:

class MyThread1 implements Runnable{

 Thread t;

 MyThread1(String s) {

 t=new Thread(this,s);

 t.start();

 }

 public void run() {

 for(int i=0;i<5;i++) {

 System.out.println("Thread Name :"+Thread.currentThread().getName());

 try {

 Thread.sleep(1000);

 }catch(Exception e){}

 }

 }

}

public class RunnableThread1{

 public static void main(String args[]) {

 System.out.println("Thread Name :"+Thread.currentThread().getName());

 MyThread1 m1=new MyThread1("My Thread 1");

 MyThread1 m2=new MyThread1("My Thread 2");

 }

}

Output of the program:

C:\nisha>javac RunnableThread1.java

C:\nisha>java RunnableThread1

Thread Name :main

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Thread Name :My Thread 2

Thread Name :My Thread 1

Note that, this program gives the same output as the output of the previous example. It means,

you can use either class Thread or interface Runnable to implement thread in your program.

2.4 Priorities and Synchronization

Priorities

In Java, thread scheduler can use the thread priorities in the form of integer value to each of its

thread to determine the execution schedule of threads . Thread gets the ready-to-run state

according to their priorities. The thread scheduler provides the CPU time to thread of highest

priority during ready-to-run state.

Priorities are integer values from 1 (lowest priority given by the constant

Thread.MIN_PRIORITY) to 10 (highest priority given by the constant

Thread.MAX_PRIORITY). The default priority is 5(Thread.NORM_PRIORITY).

 Constant Description

 Thread.MIN_PRIORITY
 The maximum priority of any

thread (an int value of 10)

 Thread.MAX_PRIORITY
 The minimum priority of any

thread (an int value of 1)

 Thread.NORM_PRIORITY
 The normal priority of any

thread (an int value of 5)

 The methods that are used to set the priority of thread shown as:

 Method Description

 setPriority()
This is method is used to set the

priority of thread.

 getPriority()
This method is used to get the

priority of thread.

When a Java thread is created, it inherits its priority from the thread that created it. At any given

time, when multiple threads are ready to be executed, the runtime system chooses the runnable

thread with the highest priority for execution. In Java runtime system, preemptive scheduling

algorithm is applied. If at the execution time a thread with a higher priority and all other threads

are runnable then the runtime system chooses the new higher priority thread for execution. On

the other hand, if two threads of the same priority are waiting to be executed by the CPU then

the round-robin algorithm is applied in which the scheduler chooses one of them to run

according to their round of time-slice.

Thread Scheduler

In the implementation of threading scheduler usually applies one of the two following strategies:

 Preemptive scheduling – If the new thread has a higher priority then current running

thread leaves the runnable state and higher priority thread enter to the runnable state.

 Time-Sliced (Round-Robin) Scheduling – A running thread is allowed to be execute for

the fixed time, after completion the time, current thread indicates to the another thread to

enter it in the runnable state.

You can also set a thread's priority at any time after its creation using the setPriority method.

Lets see, how to set and get the priority of a thread.

class MyThread1 extends Thread{

 MyThread1(String s){

 super(s);

 start();

 }

 public void run(){

 for(int i=0;i<3;i++){

 Thread cur=Thread.currentThread();

 cur.setPriority(Thread.MIN_PRIORITY);

 int p=cur.getPriority();

 System.out.println("Thread Name :"+Thread.currentThread().getName());

 System.out.println("Thread Priority :"+cur);

 }

 }

}

 class MyThread2 extends Thread{

 MyThread2(String s){

 super(s);

 start();

 }

public void run(){

 for(int i=0;i<3;i++){

 Thread cur=Thread.currentThread();

 cur.setPriority(Thread.MAX_PRIORITY);

 int p=cur.getPriority();

 System.out.println("Thread Name :"+Thread.currentThread().getName());

 System.out.println("Thread Priority :"+cur);

 }

 }

}

public class ThreadPriority{

 public static void main(String args[]){

 MyThread1 m1=new MyThread1("My Thread 1");

 MyThread2 m2=new MyThread2("My Thread 2");

 }

}

Output of the Program:

C:\nisha>javac ThreadPriority.java

C:\nisha>java ThreadPriority

Thread Name :My Thread 1
Thread Name :My Thread 2

Thread Priority :Thread[My Thread 2,10,main]

Thread Name :My Thread 2
Thread Priority :Thread[My Thread 2,10,main]

Thread Name :My Thread 2

Thread Priority :Thread[My Thread 2,10,main]
Thread Priority :Thread[My Thread 1,1,main]

Thread Name :My Thread 1

Thread Priority :Thread[My Thread 1,1,main]
Thread Name :My Thread 1

Thread Priority :Thread[My Thread 1,1,main]

In this program two threads are created. We have set up maximum priority for the first thread

"MyThread2" and minimum priority for the first thread "MyThread1" i.e. the after executing

the program, the first thread is executed only once and the second thread "MyThread2" started

to run until either it gets end or another thread of the equal priority gets ready to run state.

Synchronization

In Java, the threads are executed independently to each other. These types of threads are called as

asynchronous threads. But there are two problems may be occur with asynchronous threads.

 Two or more threads share the same resource (variable or method) while only one of

them can access the resource at one time.

 If the producer and the consumer are sharing the same kind of data in a program then

either producer may produce the data faster or consumer may retrieve an order of data

and process it without its existing.

Suppose, we have created two methods as increment() and decrement(). which increases or

decreases value of the variable "count" by 1 respectively shown as:

public void increment() {

 count++;

 }

 public void decrement()

{

 count--;

 }
public int value() {

 return count;

 }

When the two threads are executed to access these methods (one for increment(),another for

decrement()) then both will share the variable "count". in that case, we can't be sure that what

value will be returned of variable "count".

We can see this problem in the diagram shown below:

To avoid this problem, Java uses monitor also known as “semaphore” to prevent data from

being corrupted by multiple threads by a keyword synchronized to synchronize them and

intercommunicate to each other. It is basically a mechanism which allows two or more threads to

share all the available resources in a sequential manner. Java's synchronized is used to ensure

that only one thread is in a critical region. critical region is a lock area where only one thread is

run (or lock) at a time. Once the thread is in its critical section, no other thread can enter to that

critical region. In that case, another thread will has to wait until the current thread leaves its

critical section.

General form of the synchronized statement is as:

synchronized(object)

{

// statements to be

synchronized

}

Lock:

 Lock term refers to the access granted to a particular thread that can access the shared resources.

At any given time, only one thread can hold the lock and thereby have access to the shared

resource. Every object in Java has build-in lock that only comes in action when the object has

synchronized method code. By associating a shared resource with a Java object and its lock, the

object can act as a guard, ensuring synchronized access to the resource. Only one thread at a time

can access the shared resource guarded by the object lock.

Since there is one lock per object, if one thread has acquired the lock, no other thread can acquire

the lock until the lock is not released by first thread. Acquire the lock means the thread currently

in synchronized method and released the lock means exits the synchronized method.

Remember the following points related to lock and synchronization:

 Only methods (or blocks) can be synchronized, Classes and variable cannot be

synchronized.

 Each object has just one lock.

 All methods in a class need not to be synchronized. A class can have both synchronized

and non-synchronized methods.

 If two threads wants to execute a synchronized method in a class, and both threads are

using the same instance of the class to invoke the method then only one thread can

execute the method at a time.

 If a class has both synchronized and non-synchronized methods, multiple threads can still

access the class's non-synchronized methods. If you have methods that don't access the

data you're trying to protect, then you don't need to synchronize them. Synchronization

can cause a hit in some cases (or even deadlock if used incorrectly), so you should be

careful not to overuse it.

 If a thread goes to sleep, it holds any locks it has—it doesn't release them.

 A thread can acquire more than one lock. For example, a thread can enter a synchronized

method, thus acquiring a lock, and then immediately invoke a synchronized method on a

different object, thus acquiring that lock as well. As the stack unwinds, locks are released

again.

 You can synchronize a block of code rather than a method.

 Constructors cannot be synchronized

There are two ways to synchronized the execution of code:

1. Synchronized Methods

2. Synchronized Blocks (Statements)

3.

Synchronized Methods:

Any method is specified with the keyword synchronized is only executed by one thread at a

time. If any thread want to execute the synchronized method, firstly it has to obtain the objects

lock. If the lock is already held by another thread, then calling thread has to wait.

Synchronized methods are useful in those situations where methods are executed concurrently,

so that these can be intercommunicate manipulate the state of an object in ways that can corrupt

the state if . Stack implementations usually define the two operations push and pop of elements

as synchronized, that’s why pushing and popping are mutually exclusive operations. For

Example if several threads were sharing a stack, if one thread is popping the element on the stack

then another thread would not be able to pushing the element on the stack.

The following program demonstrates the synchronized method:

class Share extends Thread{

 static String msg[]={"This", "is", "a", "synchronized", "variable"};

 Share(String threadname){

 super(threadname);

 }

 public void run(){

 display(getName());

 }

 public synchronized void display(String threadN){

 for(int i=0;i<=4;i++)

 System.out.println(threadN+msg[i]);

 try{

 this.sleep(1000);

 }catch(Exception e){}

 }

}

public class SynThread1 {

 public static void main(String[] args) {

 Share t1=new Share("Thread One: ");

 t1.start();

 Share t2=new Share("Thread Two: ");

 t2.start();

}

}

Output of the program is:

C:\nisha>javac

SynThread.java

C:\nisha>java

SynThread

Thread One: This

Thread One: is

Thread One: a

Thread One:

synchronized

Thread One: variable

Thread Two: This

Thread Two: is

Thread two: a

Thread Two:

synchronized

Thread Two: variable

In this program, the method "display()" is synchronized that will be shared by both thread's

objects at the time of program execution. Thus only one thread can access that method and

process it until all statements of the method are executed.

Synchronized Blocks (Statements)

Another way of handling synchronization is Synchronized Blocks (Statements). Synchronized

statements must specify the object that provides the native lock. The synchronized block allows

execution of arbitrary code to be synchronized on the lock of an arbitrary object.

General form of synchronized block is:

synchronized (object reference

expression)

 {

// statements to be synchronized

}

The following program demonstrates the synchronized block that shows the same output as the

output of the previous example:

class Share extends Thread{

 static String msg[]={"This", "is", "a", "synchronized", "variable"};

 Share(String threadname){

 super(threadname);

 }

 public void run(){

 display(getName());

 }

 public void display(String threadN){

 synchronized(this){
 for(int i=0;i<=4;i++)

 System.out.println(threadN+msg[i]);

 try{

 this.sleep(1000);

 }catch(Exception e){}

 }

}

public class SynStatement {

 public static void main(String[] args) {

 Share t1=new Share("Thread One: ");

 t1.start();

 Share t2=new Share("Thread Two: ");

 t2.start();

}

}

Output of the Program

 C:\nisha>javac

SynStatement.java

C:\nisha>java

SynStatement

Thread One: This

Thread One: is

Thread One: a

Thread One:

synchronized

Thread One: variable

Thread Two: This

Thread Two: is

Thread Two: a

Thread Two:

synchronized

Thread Two: variable

2.5 Inter Thread Communication

Java provides a very efficient way through which multiple-threads can communicate with each-

other. This way reduces the CPU’s idle time i.e. A process where, a thread is paused running in

its critical region and another thread is allowed to enter (or lock) in the same critical section to be

executed. This technique is known as Interthread communication which is implemented by

some methods. These methods are defined in "java.lang" package and can only be called within

synchronized code shown as:

 Method Description

 wait()

 It indicates the calling thread to give up the monitor and go to

sleep until some other thread enters the same monitor and calls

method notify() or notifyAll().

 notify()
 It wakes up the first thread that called wait() on the same

object.

 notifyAll(

)

 Wakes up (Unloack) all the threads that called wait() on the

same object. The highest priority thread will run first.

All these methods must be called within a try-catch block.

Lets see an example implementing these methods :

class Shared {

int num=0;

boolean value = false;

synchronized int get() {

 if (value==false)

 try {

 wait();

 }

 catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

System.out.println("consume: " + num);

value=false;

notify();

return num;

}

synchronized void put(int num) {

 if (value==true)

 try {

 wait();

 }

 catch (InterruptedException e) {

 System.out.println("InterruptedException caught");

 }

 this.num=num;

 System.out.println("Produce: " + num);

 value=false;

 notify();

 }

 }

 class Producer extends Thread {

 Shared s;

 Producer(Shared s) {

 this.s=s;

 this.start();

 }

 public void run() {

 int i=0;

 s.put(++i);

 }

}

class Consumer extends Thread{

 Shared s;

 Consumer(Shared s) {

 this.s=s;

 this.start();

 }

 public void run() {

 s.get();

 }

}

public class InterThread{

 public static void main(String[] args)

 {

 Shared s=new Shared();

 new Producer(s);

 new Consumer(s);

 }

}

Output of the Program:

C:\nisha>javac

InterThread.java

C:\nisha>java

InterThread

Produce: 1

consume: 1

In this program, two threads "Producer" and "Consumer" share the synchronized methods of

the class "Shared". At time of program execution, the "put()" method is invoked through the

"Producer" class which increments the variable "num" by 1. After producing 1 by the

producer, the method "get()" is invoked by through the "Consumer" class which retrieves the

produced number and returns it to the output. Thus the Consumer can't retrieve the number

without producing of it.

Another program demonstrates the uses of wait() & notify() methods:

public class DemoWait extends Thread{

 int val=20;

 public static void main(String args[]) {

 DemoWait d=new DemoWait();

 d.start();

 new Demo1(d);

 }

 public void run(){

 try {

 synchronized(this){

 wait();

 System.out.println("value is :"+val);

 }

 }catch(Exception e){}

 }

 public void valchange(int val){

 this.val=val;

 try {

 synchronized(this) {

 notifyAll();

 }

 }catch(Exception e){}

 }

}

class Demo1 extends Thread{

 DemoWait d;

 Demo1(DemoWait d) {

 this.d=d;

 start();

 }

 public void run(){

 try{

 System.out.println("Demo1 value is"+d.val);

 d.valchange(40);

 }catch(Exception e){}

 }

}

Output of the program is:

C:\j2se6\thread>javac

DemoWait.java

C:\j2se6\thread>java

DemoWait

Demo1 value is20

value is :40

C:\j2se6\thread>

2.6 Runnable Interface

The Runnable interface should be implemented by any class whose instances are intended to be

executed by a thread. The class must define a method of no arguments called run.

This interface is designed to provide a common protocol for objects that wish to execute code

while they are active. For example, Runnable is implemented by class Thread. Being active

simply means that a thread has been started and has not yet been stopped.

In addition, Runnable provides the means for a class to be active while not subclassing Thread.

A class that implements Runnable can run without subclassing Thread by instantiating a Thread

instance and passing itself in as the target. In most cases, the Runnable interface should be used

if you are only planning to override the run() method and no other Thread methods. This is

important because classes should not be subclassed unless the programmer intends on modifying

or enhancing the fundamental behavior of the class.

