
Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

1

Chapter 1 Introduction to Java

Features of java:-

1. Simple

2. Object-Oriented

3. Architecture neutral

4. High Performance

5. Distributed

6. Multithreade

7. Platform independent

8. Secured

9. Robust

10. Portable

11. Dynamic

Simple
According to Sun, Java language is simple because:

 syntax is based on C++ (so easier for programmers to learn it after C++).

 removed many confusing and/or rarely-used features e.g., explicit pointers, operator overloading

etc.

 No need to remove unreferenced objects because there is Automatic Garbage Collection in java.

Object-oriented

Object-oriented means we organize our software as a combination of different types of objects that

incorporates both data and behaviour.

Object-oriented programming(OOPs) is a methodology that simplify software development and

maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

Architecture-neutral
There is no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes of

memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for both 32 and 64 bit

architectures.

High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still somewhat

slower than a compiled language (e.g., C++)

Distributed

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

2

We can create distributed applications in java. RMI and EJB are used for creating distributed

applications. We may access files by calling the methods from any machine on the internet.

Multi-threaded
A thread is like a separate program, executing concurrently. We can write Java programs that deal

with many tasks at once by defining multiple threads. The main advantage of multi-threading is that

it doesn't occupy memory for each thread. It shares a common memory area. Threads are important

for multi-media, Web applications etc.

Platform Independent

Platform Independent

Secured
Java is secured because:

 No explicit pointer
 Java Programs run inside virtual machine sandbox

 Classloader: adds security by separating the package for the classes of the local file system

from those that are imported from network sources.

 Bytecode Verifier: checks the code fragments for illegal code that can violate access right to

objects.

A platform is the hardware or software environment in

which a program runs.

There are two types of platforms software-based and

hardware-based. Java provides software-based platform.

The Java platform differs from most other platforms in the

sense that it is a software-based platform that runs on the top

of other hardware-based platforms. It has two components:

1. Runtime Environment
2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows,

Linux, Sun Solaris, Mac/OS etc. Java code is compiled by

the compiler and converted into bytecode. This bytecode is

a platform-independent code because it can be run on

multiple platforms i.e. Write Once and Run

Anywhere(WORA).

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

3

 Security Manager: determines what resources a class can access such as reading and writing

to the local disk.

Robust

Robust simply means strong. Java uses strong memory management. There are lack of pointers that

avoids security problem. There is automatic garbage collection in java. There is exception handling

and type checking mechanism in java. All these points makes java robust.

Portable

We may carry the java bytecode to any platform.

ava Tool Description

appletviewer To run applets outside of a web browser.

jar To aggregate and compress multiple files into a singe JAR file.

java To launch Java applications.

javac To compile Java source files to binary class files.

javadoc To generate API documentation out of Java source files.

javah To generate C language header and stubs while writing native methods.

javap To disassemble Java class files.

java-rmi To generate stubs, skeletons and other RMI related tasks.

jdb To debug a Java class

rmic To generate stubs and skeletons for Java remote objects

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen,

chair, table etc.Object-Oriented Programming

is a methodology or paradigm to design a

program using classes and objects. It simplifies

the software development and maintenance by

providing some concepts:
 Object
 Class
 Inheritance
 Polymorphism
 Abstraction
 Encapsulation

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

4

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table,

keyboard, bike etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviours of parent object i.e. known as

inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example: phone

call, we don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.

Encapsulation

When one task is performed by different

ways i.e. known as polymorphism. For

example: to convince the customer

differently, to draw something e.g. shape or

rectangle etc.

In java, we use method overloading and

method overriding to achieve

polymorphism.

Another example can be to speak something

e.g. cat speaks meaw, dog barks woof etc.

Binding (or wrapping) code and data together

into a single unit is known as encapsulation. For

example: capsule, it is wrapped with different

medicines.A java class is the example of

encapsulation. Java bean is the fully encapsulated

class because all the data members are private here.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

5

Difference between C++ and JAVA

Comparison Index C++ Java

Platform-

independent
C++ is platform-dependent. Java is platform-independent.

Mainly used for
C++ is mainly used for system

programming.

Java is mainly used for application

programming. It is widely used in window,

web-based, enterprise and mobile

applications.

Goto C++ supports goto statement. Java doesn't support goto statement.

Multiple

inheritance

C++ supports multiple

inheritance.

Java doesn't support multiple inheritance

through class. It can be achieved by

interfaces in java.

Operator

Overloading

C++ supports operator

overloading.
Java doesn't support operator overloading.

Pointers
C++ supports pointers. You can

write pointer program in C++.

Java supports pointer internally. But you

can't write the pointer program in java. It

means java has restricted pointer support in

java.

Compiler and

Interpreter
C++ uses compiler only. Java uses compiler and interpreter both.

Call by Value and

Call by reference

C++ supports both call by value

and call by reference.

Java supports call by value only. There is no

call by reference in java.

Structure and

Union

C++ supports structures and

unions.
Java doesn't support structures and unions.

Thread Support

C++ doesn't have built-in support

for threads. It relies on third-

party libraries for thread support.

Java has built-in thread support.

Documentation

comment

C++ doesn't support

documentation comment.

Java supports documentation comment (/**

... */) to create documentation for java source

code.

Virtual Keyword

C++ supports virtual keyword so

that we can decide whether or not

override a function.

Java has no virtual keyword. We can

override all non-static methods by default. In

other words, non-static methods are virtual

by default.

Inheritance Tree
C++ creates a new inheritance

tree always.

Java uses single inheritance tree always

because all classes are the child of Object

class in java. Object class is the root of

inheritance tree in java.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

6

Structure of java program

Class Section: The Class section describes the information about user-defined classes present in the

program. A class is a collection of fields (data variables) and methods that operate on the fields.

Every program in Java consists of at least one class, the one that contains the main method. The

main () method which is from where the execution of program actually starts and follow the

statements in the order specified.

The class section is mandatory.

Main Method class:

Java stand alone program requires main method as starting point.

This is essential part of program

Main method creates object of various classes.

After discussing the structure of programs in Java, we shall now discuss a program that

displays a string Hello Java on the screen.

// Program to display message on the screen

class HelloJava

{

 public static void main(String args[])

 {

 System.out.println("Hello Java");

 }

}

A Java program consists of different sections.

Some of them are mandatory but some are

optional. The optional section can be excluded

from the program depending upon the

requirements of the programmer.

Documentation Section
It includes the comments to tell the program's

purpose. It improves the readability of the

program.

Package Statement
It includes statement that provides a package

declaration. e.g package Student

Import statements
It includes statements used for referring classes

and interfaces that are declared in other

packages. e.g import java.io.*;
Interface Section

Interface like class but includes group of

methods declaration .Used when we want to

implement multiple inheritance feature. It is

similar to a class but only includes constants,

method declaration.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

7

Data Types

Data Type Default Value Default size

boolean false 1 bit

char '\u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Java Naming conventions
Java naming convention is a rule to follow as you decide what to name your identifiers such as

class, package, variable, constant, method etc.

But, it is not forced to follow. So, it is known as convention not rule.

All the classes, interfaces, packages, methods and fields of java programming language are given

according to java naming convention.

Advantage of naming conventions in java
By using standard Java naming conventions, you make your code easier to read for yourself and for

other programmers. Readability of Java program is very important. It indicates that less time is spent

to figure out what the code does.

Name Convention

class name
should start with uppercase letter and be a noun e.g. String, Color, Button, System, Thread

etc.

interface name
should start with uppercase letter and be an adjective e.g. Runnable, Remote,

ActionListener etc.

method name
should start with lowercase letter and be a verb e.g. actionPerformed(), main(), print(),

println() etc.

variable name should start with lowercase letter e.g. firstName, orderNumber etc.

package name should be in lowercase letter e.g. java, lang, sql, util etc.

constants should be in uppercase letter. e.g. RED, YELLOW, MAX_PRIORITY etc.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

8

name

Decision Making

Decision making statement statements is also called selection statement. That is depending on the

condition block need to be executed or not which is decided by condition. If the condition is "true"

statement block will be executed, if condition is "false" then statement block will not be executed. In

java there are three types of decision making statement.

 if
 if-else
 switch

if-then Statement

if-then is most basic statement of Decision making

statement. It tells to program to execute a certain

part of code only if particular condition is true.

Syntax
if(condition)

 {

 Statement(s)

 }

e.g
class Hello

{

 int a=10;

 public static void main(String[] args)

 {

 if(a<15)

 {

 System.out.println("Hello good morning!");

 }

 }

}

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

9

if-else statement

Type Casting

Well, all casting really means is taking an Object of one particular type and “turning it into” another

Object type. This process is called casting a variable. This topic is not specific to Java, as many

other programming languages support casting of their variable types.

The process of converting one data type to another is called casting. Casting is often necessary when

a function returns a data of type in different form then we need to perform an operation. Under

In general it can be used to execute one

block of statement among two blocks, in

java language if and else are the keyword

in java

Syntax
if(condition)

 {

 Statement(s)

 }

 else

 {

 Statement(s)

 }

Switch Statement

The switch statement in java language

is used to execute the code from

multiple conditions or case. It is same

like if else-if ladder statement.

A switch statement work with byte,

short, char and int primitive data type, it

also works with enumerated types and

string.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

10

certain circumstances Type conversion can be carried out automatically, in other cases it must be

"forced" manually (explicitly). For example, the read() member function of the standard input stream

(System.in) returns an int.

In some cases, the data type of the expression is changed automatically to the variable's data type.

For example, suppose that i is an integer variable declared as follows:

 int i = 10;

Even though d is a variable of type double, the following assignment is valid:

 double d = i; //

valid, i is converted

to type double

Java Array
Normally, array is a collection of similar type of elements that have contiguous memory location.

Java array is an object the contains elements of similar data type. It is a data structure where we

store similar elements. We can store only fixed set of elements in a java array.

Array in java is index based, first element of the array is stored at 0 index.

Advantage of Java Array

 Code Optimization: It makes the code optimized, we can retrieve or sort the data easily.

 Random access: We can get any data located at any index position.

Disadvantage of Java Array

 Size Limit: We can store only fixed size of elements in the array. It doesn't grow its size at

runtime. To solve this problem, collection framework is used in java.

Types of Array in java
There are two types of array.

 Single Dimensional Array

 Multidimensional Array

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

11

Single/One Dimensional Array in java

Syntax to Declare an Array in java

1. dataType[] arr; (or)

2. dataType []arr; (or)

3. dataType arr[];

Example of single dimensional java array

Let's see the simple example of java array, where we are going to declare, instantiate, initialize and

traverse an array.

class Testarray
{
 public static void main(String args[])
 {

int a[]=new int[5];//declaration and instantiation
a[0]=10;//initialization
a[1]=20;
a[2]=70;
a[3]=40;
a[4]=50;
//printing array
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);

 }
}

Output:

 10

 20

 70

 40

 50

Multidimensional array in java/Two Dimensional Array

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in java

1. dataType[][] arrayRefVar; (or)
2. dataType [][]arrayRefVar; (or)

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

12

3. dataType arrayRefVar[][]; (or)
4. dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in java

1. int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in java

1. arr[0][0]=1;
2. arr[0][1]=2;
3. arr[0][2]=3;
4. arr[1][0]=4;
5. arr[1][1]=5;
6. arr[1][2]=6;
7. arr[2][0]=7;
8. arr[2][1]=8;
9. arr[2][2]=9;

Example of Multidimensional java array

Let's see the simple example to declare, instantiate, initialize and print the 2Dimensional array.

class Testarray3
{

public static void main(String args[])
{

//declaring and initializing 2D array
int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
//printing 2D array
for(int i=0;i<3;i++)
{

 for(int j=0;j<3;j++)
{

 System.out.print(arr[i][j]+" ");
 }
 System.out.println();

}
}

}
Output:1 2 3

 2 4 5

 4 4 5

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

13

Java String

1)

In java, string is basically an object that represents sequence of char values. An array of characters

works same as java string. For example:

char[] ch={'j','a','v','a','t','p','o','i','n','t'};

String s=new String(ch);

is same as:

1. String s="ACS College";

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variable

Java String Example
public class StringExample

{

public static void main(String args[])

{

String s1="java";//creating string by java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

 }

 }
Output

java

strings

example

Java String class methods
The java.lang.String class provides a lot of methods to work on string. By the help of these methods,

we can perform operations on string such as trimming, concatenating, converting, comparing,

replacing strings etc.

Java String is a powerful concept because everything is treated as a string if you submit any form in

window based, web based or mobile application.

Let's see the important methods of String class.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

14

Java String Methods
String charAt(), String compareTo(), String concat() ,String contains() ,String endsWith(), String equals()

,equalsIgnoreCase() ,String format() ,String getBytes() ,String getChars(), String indexOf() , String

isEmpty(), String join(), String lastIndexOf(), String length() ,String replace() ,String replaceAll() , String

startsWith() String substring(), String toCharArray(), String toLowerCase(), String toUpperCase() ,String

trim() ,String valueOf().

Java String toUpperCase() and toLowerCase() method

The java string toUpperCase() method converts this string into uppercase letter and string

toLowerCase() method into lowercase letter.

1. String s="Sachin";
2. System.out.println(s.toUpperCase());//SACHIN
3. System.out.println(s.toLowerCase());//sachin
4. System.out.println(s);//Sachin(no change in original)

Output
SACHIN

sachin

Sachin

Java String trim() method

The string trim() method eliminates white spaces before and after string.

1. String s=" Sachin ";
2. System.out.println(s);// Sachin
3. System.out.println(s.trim());//Sachin

Output
 Sachin

Sachin

Java String startsWith() and endsWith() method

1. String s="Sachin";
2. System.out.println(s.startsWith("Sa"));//true
3. System.out.println(s.endsWith("n"));//true

Output
true

true

http://www.javatpoint.com/java-string-charat
http://www.javatpoint.com/java-string-compareto
http://www.javatpoint.com/java-string-concat
http://www.javatpoint.com/java-string-contains
http://www.javatpoint.com/java-string-endswith
http://www.javatpoint.com/java-string-equals
http://www.javatpoint.com/java-string-equalsignorecase
http://www.javatpoint.com/java-string-format
http://www.javatpoint.com/java-string-getbytes
http://www.javatpoint.com/java-string-getchars
http://www.javatpoint.com/java-string-indexof
http://www.javatpoint.com/java-string-isempty
http://www.javatpoint.com/java-string-isempty
http://www.javatpoint.com/java-string-join
http://www.javatpoint.com/java-string-lastindexof
http://www.javatpoint.com/java-string-length
http://www.javatpoint.com/java-string-replace
http://www.javatpoint.com/java-string-replaceall
http://www.javatpoint.com/java-string-startswith
http://www.javatpoint.com/java-string-startswith
http://www.javatpoint.com/java-string-substring
http://www.javatpoint.com/java-string-tochararray
http://www.javatpoint.com/java-string-tolowercase
http://www.javatpoint.com/java-string-touppercase
http://www.javatpoint.com/java-string-trim
http://www.javatpoint.com/java-string-trim
http://www.javatpoint.com/java-string-valueof

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

15

Java String charAt() method

The string charAt() method returns a character at specified index.

1. String s="Sachin";
2. System.out.println(s.charAt(0));//S
3. System.out.println(s.charAt(3));//h

Output
S

h

Java String length() method

The string length() method returns length of the string.

1. String s="Sachin";
2. System.out.println(s.length());//6

Output
6

Java String replace() method

The string replace() method replaces all occurrence of first sequence of character with second

sequence of character.

1. String s1="Java is a programming language. Java is a platform. Java is an Island.";

2. String replaceString=s1.replace("Java","Kava");//replaces all occurrences of "Java" to "Kava

"

3. System.out.println(replaceString);

Output:

Kava is a programming language. Kava is a platform. Kava is an Island.

Java String valueOf() method

The string valueOf() method coverts given type such as int, long, float, double, boolean, char and

char array into string.

1. int a=10;

2. String s=String.valueOf(a);

3. System.out.println(s+10);

Output:

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

16

1010

Java StringBuffer class

Java StringBuffer class is used to created mutable (modifiable) string. The StringBuffer class in java

is same as String class except it is mutable i.e. it can be changed.

Important Constructors of StringBuffer class

1. StringBuffer(): creates an empty string buffer with the initial capacity of 16.
2. StringBuffer(String str): creates a string buffer with the specified string.
3. StringBuffer(int capacity): creates an empty string buffer with the specified capacity as length.

Important methods of StringBuffer class

1. public synchronized StringBuffer append(String s): is used to append the specified string with this
string. The append() method is overloaded like append(char), append(boolean), append(int),
append(float), append(double) etc.

2. public synchronized StringBuffer insert(int offset, String s): is used to insert the specified string
with this string at the specified position. The insert() method is overloaded like insert(int, char),
insert(int, boolean), insert(int, int), insert(int, float), insert(int, double) etc.

3. public synchronized StringBuffer replace(int startIndex, int endIndex, String str): is used to replace
the string from specified startIndex and endIndex.

4. public synchronized StringBuffer delete(int startIndex, int endIndex): is used to delete the string
from specified startIndex and endIndex.

5. public synchronized StringBuffer reverse(): is used to reverse the string.
6. public int capacity(): is used to return the current capacity.
7. public void ensureCapacity(int minimumCapacity): is used to ensure the capacity at least equal to

the given minimum.
8. public char charAt(int index): is used to return the character at the specified position.
9. public int length(): is used to return the length of the string i.e. total number of characters.
10. public String substring(int beginIndex): is used to return the substring from the specified

beginIndex.
11. public String substring(int beginIndex, int endIndex): is used to return the substring from the

specified beginIndex and endIndex.

Difference between String and StringBuffer

No. String StringBuffer

1) String class is immutable. StringBuffer class is mutable.

2)

String is slow and consumes more memory when you

concat too many strings because every time it creates new

instance.

StringBuffer is fast and consumes

less memory when you cancat

strings.

3)
String class overrides the equals() method of Object class.

So you can compare the contents of two strings by

StringBuffer class doesn't override

the equals() method of Object class.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

17

equals() method.

Chapter 2 Classes and Objects

Class in Java

A class is a group of objects that has common properties. It is a template or blueprint from which

objects are created.

A class in java can contain:

 data member

 method

 constructor

 block

 class and interface

Syntax to declare a class:

1. class <class_name>{

2. data member;

3. method;

4. }

Object in Java

An entity that has state and behavior is known as an object

e.g. chair, bike, marker, pen, table, car etc. It can be

physical or logical (tengible and intengible). The example

of integible object is banking system.

An object has three characteristics:

 state: represents data (value) of an object.

 behavior: represents the behavior (functionality) of

an object such as deposit, withdraw etc.

 identity: Object identity is typically implemented

via a unique ID. The value of the ID is not visible to

the external user. But,it is used internally by the

JVM to identify each object uniquely.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

18

Object is an instance of a class. Class is a template or blueprint from which objects are created. So

object is the instance(result) of a class.

Simple Example of Object and Class

In this example, we have created a Student class that have two data members id and name. We are

creating the object of the Student class by new keyword and printing the objects value.

1. class Student1{
2. int id;//data member (also instance variable)
3. String name;//data member(also instance variable)
4.
5. public static void main(String args[]){
6. Student1 s1=new Student1();//creating an object of Student
7. System.out.println(s1.id);
8. System.out.println(s1.name);
9. }
10. }

Output:0 null

new keyword

The new keyword is used to allocate memory at runtime.

Example of Object and class that maintains the records of students

In this example, we are creating the two objects of Student class and initializing the value to these objects by

invoking the insertRecord method on it. Here, we are displaying the state (data) of the objects by invoking

the displayInformation method.

1. class Student2
2. { int rollno;
3. String name;
4. void insertRecord(int r, String n){ //method
5. rollno=r;
6. name=n;
7. }
8. void displayInformation()
9. { System.out.println(rollno+" "+name);}//method
10. public static void main(String args[]){
11. Student2 s1=new Student2();

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

19

12. Student2 s2=new Student2();
13. s1.insertRecord(111,"Karan");
14. s2.insertRecord(222,"Aryan");
15. s1.displayInformation();
16. s2.displayInformation();
17. }
18. }

Output
 111 Karan

 222 Aryan

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other

words, it is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is

performed automatically. So, java provides better memory management.

Advantage of Garbage Collection

 It makes java memory efficient because garbage collector removes the unreferenced objects from
heap memory.

 It is automatically done by the garbage collector(a part of JVM) so we don't need to make extra
efforts.

Constructor in Java

1. Types of constructors
1. Default Constructor
2. Parameterized Constructor

2. Constructor Overloading
3. Does constructor return any value
4. Copying the values of one object into another
5. Does constructor perform other task instead initialization

Constructor in java is a special type of method that is used to initialize the object.

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data

for the object that is why it is known as constructor.

Rules for creating java constructor

http://www.javatpoint.com/constructor#constypes
http://www.javatpoint.com/constructor#consdef
http://www.javatpoint.com/constructor#conspara
http://www.javatpoint.com/constructor#consoverloading
http://www.javatpoint.com/constructor#consdoesreturn
http://www.javatpoint.com/constructor#conscopy
http://www.javatpoint.com/constructor#consothertask

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

20

There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name
2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)
2. Parameterized constructor

Java Default Constructor

A constructor that have no parameter is known as default constructor.

Syntax of default constructor:
1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of

object creation.

1. class Bike1{
2. Bike1(){System.out.println("Bike is created");}
3. public static void main(String args[]){
4. Bike1 b=new Bike1();
5. }
6. }

Output:
Bike is created

Q) What is the purpose of default constructor?
Default constructor provides the default values to the object like 0, null etc. depending on the type.

Example of default constructor that displays the default values
class Student3{
int id;
String name;
void display(){System.out.println(id+" "+name);}
public static void main(String args[]){
Student3 s1=new Student3();
Student3 s2=new Student3();
s1.display();
s2.display();
}
}

Output:

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

21

0 null

0 null

Java parameterized constructor

A constructor that have parameters is known as parameterized constructor.

Why use parameterized constructor?

Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We can have

any number of parameters in the constructor.

1. class Student4{
2. int id;
3. String name;
4.
5. Student4(int i,String n){
6. id = i;
7. name = n;
8. }
9. void display(){System.out.println(id+" "+name);}
10.
11. public static void main(String args[]){
12. Student4 s1 = new Student4(111,"Karan");
13. Student4 s2 = new Student4(222,"Aryan");
14. s1.display();

15. s2.display();
16. } }

Output:
111 Karan

222 Aryan

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any number of constructors that

differ in parameter lists.The compiler differentiates these constructors by taking into account the number of

parameters in the list and their type.

Example of Constructor Overloading
class Student5{
 int id;
 String name;
 int age;
 Student5(int i,String n){
 id = i;
 name = n;
 }
 Student5(int i,String n,int a){
 id = i;

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

22

 name = n;
 age=a;
 }
 void display(){System.out.println(id+" "+name+" "+age);}
 public static void main(String args[]){
 Student5 s1 = new Student5(111,"Karan");
 Student5 s2 = new Student5(222,"Aryan",25);
 s1.display();
 s2.display();
 } }
Output:

111 Karan 0

222 Aryan 25

Java Copy Constructor
There is no copy constructor in java. But, we can copy the values of one object to another like copy

constructor in C++.

There are many ways to copy the values of one object into another in java. They are:
 By constructor
 By assigning the values of one object into another
 By clone() method of Object class

In this example, we are going to copy the values of one object into another using java constructor.

1. class Student6{
2. int id;
3. String name;
4. Student6(int i,String n){
5. id = i;
6. name = n;
7. }
8.
9. Student6(Student6 s){
10. id = s.id;
11. name =s.name;
12. }
13. void display(){System.out.println(id+" "+name);}
14.
15. public static void main(String args[]){
16. Student6 s1 = new Student6(111,"Karan");
17. Student6 s2 = new Student6(s1);
18. s1.display();
19. s2.display();
20. }
21. }

Output:

111 Karan

111 Karan

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

23

Inheritance in Java

1. Inheritance
2. Types of Inheritance
3. Why multiple inheritance is not possible in java in case of class?

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors of

parent object.

The idea behind inheritance in java is that you can create new classes that are built upon existing

classes. When you inherit from an existing class, you can reuse methods and fields of parent class,

and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

Why use inheritance in java

 For Method Overriding (so runtime polymorphism can be achieved).
 For Code Reusability.

Syntax of Java Inheritance

1. class Subclass-name extends Superclass-name
2. {
3. //methods and fields
4. }

The extends keyword indicates that you are making a new class that derives from an existing class.

In the terminology of Java, a class that is inherited is called a super class. The new class is called a

subclass.

class Employee{
 float salary=40000;
}
class Programmer extends Employee{
 int bonus=10000;
 public static void main(String args[]){
 Programmer p=new Programmer();
 System.out.println("Programmer salary is:"+p.salary);
 System.out.println("Bonus of Programmer is:"+p.bonus);
}
}

Output
 Programmer salary is:40000.0

 Bonus of programmer is:10000

http://www.javatpoint.com/inheritance-in-java
http://www.javatpoint.com/inheritance-in-java#inheritancetypes
http://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

24

Types of inheritance in java
On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. We will

learn about interfaces later.

Note: Multiple inheritance is not supported in java through class

Q) Why multiple inheritance is not supported in java?
To reduce the complexity and simplify the language, multiple inheritance is not supported in java.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

25

Consider a scenario where A, B and C are three classes. The C class inherits A and B classes. If A

and B classes have same method and you call it from child class object, there will be ambiguity to

call method of A or B class.

Since compile time errors are better than runtime errors, java renders compile time error if you

inherit 2 classes. So whether you have same method or different, there will be compile time error

now.
class A{

void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were

 Public Static void main(String args[]){
 C obj=new C();
 obj.msg();//Now which msg() method would be invoked?
}
}

Output
 Compile Time Error

Interface in Java
Interface
Example of Interface
Multiple inheritance by Interface
Why multiple inheritance is supported in Interface while it is not supported in case of class.
Marker Interface
Nested Interface

An interface in java is a blueprint of a class. It has static constants and abstract methods only.

The interface in java is a mechanism to achieve fully abstraction. There can be only abstract

methods in the java interface not method body. It is used to achieve fully abstraction and multiple

inheritance in Java.

Java Interface also represents IS-A relationship.

It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

http://www.javatpoint.com/interface-in-java
http://www.javatpoint.com/interface-in-java#interfaceex
http://www.javatpoint.com/interface-in-java#interfacemultiple
http://www.javatpoint.com/interface-in-java#interfacewhynot
http://www.javatpoint.com/interface-in-java#interfacemarker
http://www.javatpoint.com/nested-interface

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

26

 It is used to achieve fully abstraction.
 By interface, we can support the functionality of multiple inheritance.
 It can be used to achieve loose coupling.

Simple example of Java interface

In this example, Printable interface have only one method, its implementation is provided in the A class.

interface printable{
void print();
}

class A6 implements printable{
public void print(){System.out.println("Hello");}

public static void main(String args[]){
A6 obj = new A6();

obj.print();
 }
}

Output
Output:Hello

Multiple inheritance in Java by interface
If a class implements multiple interfaces, or an interface extends multiple interfaces i.e. known as

multiple inheritance.

interface Printable{

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

27

 void print();
 }

interface Showable{
void show();

 }
class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}
public void show(){System.out.println("Welcome");}

public static void main(String args[]){
A7 obj = new A7();
obj.print();
obj.show();
 }

}
Output
Output:Hello

 Welcome

Abstract class in Java
A class that is declared with abstract keyword, is known as abstract class in java. It can have abstract

and non-abstract methods (method with body).

Before learning java abstract class, let's understand the abstraction in java first.

Abstraction in Java
Abstraction is a process of hiding the implementation details and showing only functionality to the

user.

Another way, it shows only important things to the user and hides the internal details for example

sending sms, you just type the text and send the message. You don't know the internal processing

about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstaction
There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

Abstract class in Java
A class that is declared as abstract is known as abstract class. It needs to be extended and its method

implemented. It cannot be instantiated.

Example abstract class
1. abstract class A{}

abstract method

A method that is declared as abstract and does not have implementation is known as abstract

method.

Example abstract method

http://www.javatpoint.com/opr/test.jsp?filename=A7

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

28

1. abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method
In this example, Bike the abstract class that contains only one abstract method run. It implementation

is provided by the Honda class.
1. abstract class Bike{
2. abstract void run();
3. }
4. class Honda4 extends Bike{
5. void run(){System.out.println("running safely..");}
6. public static void main(String args[]){
7. Bike obj = new Honda4();
8. obj.run();
9. }
10. }

Output
running safely..

interface
Abstract class and interface both are used to achieve abstraction where we can declare the abstract

methods. Abstract class and interface both can't be instantiated.

But there are many differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract and non-

abstract methods.
Interface can have only abstract methods.

2) Abstract class doesn't support multiple

inheritance.
Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static

and non-static variables.
Interface has only static and final variables.

4) Abstract class can have static methods, main

method and constructor.

Interface can't have static methods, main

method or constructor.

5) Abstract class can provide the implementation

of interface.

Interface can't provide the implementation

of abstract class.

6) The abstract keyword is used to declare abstract

class.

The interface keyword is used to declare

interface.

7) Example:

public abstract class Shape{

public abstract void draw();

}

Example:
public interface Drawable{

void draw();

}

Example of Java Runtime Polymorphism

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

29

In this example, we are creating two classes Bike and Splendar. Splendar class extends Bike class

and overrides its run() method. We are calling the run method by the reference variable of Parent

class. Since it refers to the subclass object and subclass method overrides the Parent class method,

subclass method is invoked at runtime.

Since method invocation is determined by the JVM not compiler, it is known as runtime

polymorphism.

1. class Bike{
2. void run(){System.out.println("running");}
3. }
4. class Splender extends Bike{
5. void run(){System.out.println("running safely with 60km");}
6.
7. public static void main(String args[]){
8. Bike b = new Splender();//upcasting
9. b.run();
10. }
11. }

Output
 Output:running safely with 60km.

Real example of Java Runtime Polymorphism

Consider a scenario, Bank is a class that provides method to get the rate of interest. But, rate of

interest may differ according to banks. For example, SBI, ICICI and AXIS banks could provide 8%,

7% and 9% rate of interest.

class Bank{

int getRateOfInterest(){return 0;}
}
class SBI extends Bank{
int getRateOfInterest(){return 8;}
}
class ICICI extends Bank{
int getRateOfInterest(){return 7;}
}
class AXIS extends Bank{
int getRateOfInterest(){return 9;}
}

class Test3{
public static void main(String args[]){

Bank b1=new SBI();
Bank b2=new ICICI();

Bank b3=new AXIS();
System.out.println("SBI Rate of Interest: "+b1.getRateOfInterest());

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

30

System.out.println("ICICI Rate of Interest: "+b2.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "+b3.getRateOfInterest());
}
}

Output:
SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

Method Overriding in Java
If subclass (child class) has the same method as declared in the parent class, it is known as method

overriding in java. other words, If subclass provides the specific implementation of the method that

has been provided by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

 Method overriding is used to provide specific implementation of a method that is already provided
by its super class.

 Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class
2. method must have same parameter as in the parent class.
3. must be IS-A relationship (inheritance).

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the parent class but it

has some specific implementation. The name and parameter of the method is same and there is IS-A

relationship between the classes, so there is method overriding.

class Vehicle{
void run(){System.out.println("Vehicle is running");}

}
class Bike2 extends Vehicle{
void run(){System.out.println("Bike is running safely");}

public static void main(String args[]){
Bike2 obj = new Bike2();
obj.run();
}

Output
Output:Bike is running safel

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

31

Method Overloading in Java

1. Different ways to overload the method
2. By changing the no. of arguments
3. By changing the datatype
4. Why method overloading is not possible by changing the return type
5. Can we overload the main method
6. method overloading with Type Promotion

If a class have multiple methods by same name but different parameters, it is known as Method

Overloading.

If we have to perform only one operation, having same name of the methods increases the

readability of the program.

Suppose you have to perform addition of the given numbers but there can be any number of

arguments, if you write the method such as a(int,int) for two parameters, and b (int,int,int) for three

parameters then it may be difficult for you as well as other programmers to understand the behavior

of the method because its name differs. So, we perform method overloading to figure out the

program quickly.

Advantage of method overloading?
Method overloading increases the readability of the program.

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type

Example of Method Overloading by changing the no. of arguments

In this example, we have created two overloaded methods, first sum method performs addition of

two numbers and second sum method performs addition of three numbers.

class Calculation{
 void sum(int a,int b){System.out.println(a+b);}
 void sum(int a,int b,int c){System.out.println(a+b+c);}
 public static void main(String args[]){
 Calculation obj=new Calculation();
 obj.sum(10,10,10);
 obj.sum(20,20);

 }
}

Output:30

http://www.javatpoint.com/method-overloading-in-java#monumberofways
http://www.javatpoint.com/method-overloading-in-java#mobynumber
http://www.javatpoint.com/method-overloading-in-java#mobydatatype
http://www.javatpoint.com/method-overloading-in-java#moreturntype
http://www.javatpoint.com/method-overloading-in-java#momainmethod
http://www.javatpoint.com/method-overloading-in-java#motypepromotion

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

32

 40

No. Method Overloading Method Overriding

1)
Method overloading is used to increase the readability

of the program.

Method overriding is used to provide

the specific implementation of the

method that is already provided by its

super class.

2) Method overloading is performed within class.

Method overriding occurs in two

classes that have IS-A (inheritance)

relationship.

3)
In case of method overloading, parameter must be

different.

In case of method overriding,

parameter must be same.

4)
Method overloading is the example of compile time

polymorphism.

Method overriding is the example of

run time polymorphism.

5)

In java, method overloading can't be performed by

changing return type of the method only. Return type

can be same or different in method overloading. But

you must have to change the parameter.

Return type must be same or covariant

in method overriding.

Java Inner Class
Java inner class or nested class is a class i.e. declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more

readable and maintainable.

Additionally, it can access all the members of outer class including private data members and

methods.
Syntax of Inner class

class Java_Outer_class
{

//code
 class Java_Inner_class
{

 //code
 }

}

Advantage of java inner classes
There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the members (data

members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it logically

group classes and interfaces in one place only.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

33

3) Code Optimization: It requires less code to write.

Example
class Outer_Demo {

 int num;

 // inner class

 private class Inner_Demo {

 public void print() {

 System.out.println("This is an inner class");

 }

 }

 // Accessing he inner class from the method within

 void display_Inner() {

 Inner_Demo inner = new Inner_Demo();

 inner.print();

 }

}

public class My_class {

 public static void main(String args[]) {

 // Instantiating the outer class

 Outer_Demo outer = new Outer_Demo();

 // Accessing the display_Inner() method.

 outer.display_Inner();

 }

}

Output

This is an inner class.

Access Modifiers in java
There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifiers in java specifies accessibility (scope) of a data member, method, constructor or

class.

There are 4 types of java access modifiers:
1. private
2. default
3. protected
4. public

1) private access modifier

The private access modifier is accessible only within class.

2) default access modifier

If you don't use any modifier, it is treated as default bydefault. The default modifier is accessible only within

package

3) protected access modifier
The protected access modifier is accessible within package and outside the package but through

inheritance only. The protected access modifier can be applied on the data member, method and

constructor. It can't be applied on the class.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

34

4) public access modifier

The public access modifier is accessible everywhere. It has the widest scope among all other modifiers.

Understanding all java access modifiers
Let's understand the access modifiers by a simple table.

Access Modifier within class within package outside package by subclass only outside package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

java package:-
A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package
1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

How to access package from another package?
There are three ways to access the package from outside the package.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

35

1. import package.*;
2. import package.classname;
3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not

subpackages.

The import keyword is used to make the classes and interface of another package accessible to the

current package.

Example of package that import the packagename.*
//save by A.java
package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}
//save by B.java
package mypack;
import pack.*;
class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
}

Output:Hello

STEPS for developing a User Defined PACKAGE:

1. Choose the appropriate package name, the package name must be a JAVA valid variable

name

and we showed ensure the package statement must be first executable statement.

2. Choose the appropriate class name or interface name and whose modifier must be

public. The modifier of Constructors of a class must be public.

3. The modifier of the methods of class name or interface name must be public.

4. At any point of time we should place either a class or an interface in a package and give the

file

5. name as class name or interface name with extension .java

Built-in Packages
These packages consists of a large number of classes which are a part of Java API. For e.g, we

have used java.io package previously which contain classes to support input / output operations

in Java. Similarly, there are other packages which provides different functionality.

Some of the commonly used built-in packages are shown in the table below :

Package

Name
Description

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

36

java.lang
Contains language support classes (for e.g classes which defines primitive data types,

math operations, etc.) . This package is automatically imported.

java.io Contains classes for supporting input / output operations.

java.util
Contains utility classes which implement data structures like Linked List, Hash Table,

Dictionary, etc and support for Date / Time operations.

java.applet Contains classes for creating Applets.

java.awt
Contains classes for implementing the components of graphical user interface (like

buttons, menus, etc.).

java.net Contains classes for supporting networking operations.

Accessing classes in a package
Consider the following statements :

import java.util.*;

Wrapper class in Java

Chapter 3 Collection

Collections in Java
Collections in java is a framework that provides an architecture to store and manipulate the group of

objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,

deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many

interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, PriorityQueue,

HashSet, LinkedHashSet, TreeSet etc).
What is Collection in java

Collection represents a single unit of objects i.e. a group.
What is framework in java

 provides readymade architecture.
 represents set of classes and interface.

Hierarchy of Collection Framework

Wrapper class in java provides the

mechanism to convert primitive into

object and object into primitive
Primitive

Type

Wrapper

class

Primitive

Type

Wrapper

class

boolean Boolean int Integer

char Character long Long

byte Byte float Float

short Short double Double

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

37

Let us see the hierarchy of collection framework.The java.util package contains all the classes and

interfaces for Collection framework.

Methods of Collection interface

There are many methods declared in the Collection interface. They are as follows:

No. Method Description

1 public boolean add(Object element) is used to insert an element in this collection.

2 public boolean addAll(Collection c)
is used to insert the specified collection elements in the invoking

collection.

3 public boolean remove(Object element) is used to delete an element from this collection.

4 public boolean removeAll(Collection c)
is used to delete all the elements of specified collection from the

invoking collection.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

38

5 public boolean retainAll(Collection c)
is used to delete all the elements of invoking collection except the

specified collection.

6 public int size() return the total number of elements in the collection.

7 public void clear() removes the total no of element from the collection.

8 public boolean contains(Object element) is used to search an element.

9 public boolean containsAll(Collection c) is used to search the specified collection in this collection.

10 public Iterator iterator() returns an iterator.

11 public Object[] toArray() converts collection into array.

12 public boolean isEmpty() checks if collection is empty.

13 public boolean equals(Object element) matches two collection.

14 public int hashCode() returns the hashcode number for collection.

Iterator interface

Iterator interface provides the facility of iterating the elements in forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:
1. public boolean hasNext() it returns true if iterator has more elements.
2. public object next() it returns the element and moves the cursor pointer to the next element.
3. public void remove() it removes the last elements returned by the iterator. It is rarely used.

Java ArrayList class
Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class and

implements List interface.

The important points about Java ArrayList class are:
 Java ArrayList class can contain duplicate elements.
 Java ArrayList class maintains insertion order.
 Java ArrayList class is non synchronized.
 Java ArrayList allows random access because array works at the index basis.
 In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred if any

element is removed from the array list.

Constructors of Java ArrayList

Constructor Description

ArrayList() It is used to build an empty array list.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

39

ArrayList(Collection c) It is used to build an array list that is initialized with the elements of the collection c.

ArrayList(int capacity) It is used to build an array list that has the specified initial capacity.

Methods of Java ArrayList

Method Description

void add(int index, Object element) It is used to insert the specified element at the specified position index in a list.

boolean addAll(Collection c)
It is used to append all of the elements in the specified collection to the end of

this list, in the order that they are returned by the specified collection's iterator.

void clear() It is used to remove all of the elements from this list.

int lastIndexOf(Object o)
It is used to return the index in this list of the last occurrence of the specified

element, or -1 if the list does not contain this element.

Object[] toArray()
It is used to return an array containing all of the elements in this list in the

correct order.

boolean add(Object o) It is used to append the specified element to the end of a list.

boolean addAll(int index, Collection c)
It is used to insert all of the elements in the specified collection into this list,

starting at the specified position.

int indexOf(Object o)
It is used to return the index in this list of the first occurrence of the specified

element, or -1 if the List does not contain this element.

Java ArrayList Example

import java.util.*;

class TestCollection1

{

 public static void main(String args[])

{

 ArrayList<String> list=new ArrayList<String>();//Creating arraylist

 list.add("Ravi");//Adding object in arraylist

 list.add("Vijay");

 list.add("Ravi");

 list.add("Ajay");

 //Traversing list through Iterator

 System.out.println(list);

 // OR

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

40

 Iterator itr=list.iterator();

 while(itr.hasNext())

{

 System.out.println(itr.next());

 }

 }

}

Output Ravi
 Vijay

 Ravi

 Ajay

Java LinkedList class
Java LinkedList class uses doubly linked list to store the elements. It provides a linked-list data

structure. It inherits the AbstractList class and implements List and Deque interfaces.

The important points about Java LinkedList are:
 Java LinkedList class can contain duplicate elements.
 Java LinkedList class maintains insertion order.
 Java LinkedList class is non synchronized.
 In Java LinkedList class, manipulation is fast because no shifting needs to be occurred.
 Java LinkedList class can be used as list, stack or queue.

Constructors of Java LinkedList

Constructor Description

LinkedList() It is used to construct an empty list.

LinkedList(Collection c)
It is used to construct a list containing the elements of the specified collection,

in the order they are returned by the collection's iterator.

Methods of Java LinkedList

Method Description

void add(int index, Object element)
It is used to insert the specified element at the specified position index

in a list.

void addFirst(Object o) It is used to insert the given element at the beginning of a list.

void addLast(Object o) It is used to append the given element to the end of a list.

int size() It is used to return the number of elements in a list

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

41

boolean add(Object o) It is used to append the specified element to the end of a list.

boolean contains(Object o) It is used to return true if the list contains a specified element.

boolean remove(Object o) It is used to remove the first occurence of the specified element in a list.

Object getFirst() It is used to return the first element in a list.

Object getLast() It is used to return the last element in a list.

int indexOf(Object o)
It is used to return the index in a list of the first occurrence of the

specified element, or -1 if the list does not contain any element.

int lastIndexOf(Object o)
It is used to return the index in a list of the last occurrence of the

specified element, or -1 if the list does not contain any element.

Linked List Example
 import java.util.*;

 public class TestCollection7

{

 public static void main(String args[])

{

 LinkedList<String> al=new LinkedList<String>();

 al.add("Ravi");

 al.add("Vijay");

 al.add("Ravi");

 al.add("Ajay");

 Iterator<String> itr=al.iterator();

 while(itr.hasNext())

 { System.out.println(itr.next());

 }

 }

}

 Java ListIterator Interface
ListIterator Interface is used to traverse the element in backward and forward direction.

ListIterator Interface declaration
1. public interface ListIterator<E> extends Iterator<E>

Methods of Java ListIterator Interface:

Method Description

Output:Ravi

 Vijay

 Ravi

 Ajay

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

42

boolean hasNext()
This method return true if the list iterator has more elements when traversing the list

in the forward direction.

Object next() This method return the next element in the list and advances the cursor position.

boolean

hasPrevious()
This method return true if this list iterator has more elements when traversing the list

in the reverse direction.

Object previous()
This method return the previous element in the list and moves the cursor position

backwards.

import java.util.*;

public class TestCollection8{

public static void main(String args[]){

ArrayList<String> al=new ArrayList<String>();

al.add("Amit");

al.add("Vijay");

al.add("Kumar");

al.add(1,"Sachin");

System.out.println("element at 2nd position: "+al.get(2));

ListIterator<String> itr=al.listIterator();

System.out.println("traversing elements in forward direction...");

while(itr.hasNext()){

System.out.println(itr.next());

 }

System.out.println("traversing elements in backward direction...");

while(itr.hasPrevious()){

 System.out.println(itr.previous());

 }

}

}

Difference between ArrayList and Vector

ArrayList and Vector both implements List interface and maintains insertion order.

But there are many differences between ArrayList and Vector classes that are given below.

ArrayList Vector

Output:
element at 2nd position: Vijay

 traversing elements in forward

direction...

 Amit

 Sachin

 Vijay

 Kumar

 traversing elements in backward

direction...

 Kumar

 Vijay

 Sachin

 Amit

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

43

1) ArrayList is not synchronized. Vector is synchronized.

2) ArrayList increments 50% of current

array size if number of element

exceeds from its capacity.

Vector increments 100% means doubles the array size if total

number of element exceeds than its capacity.

3) ArrayList is not a legacy class, it is

introduced in JDK 1.2.
Vector is a legacy class.

4) ArrayList is fast because it is non-

synchronized.

Vector is slow because it is synchronized i.e. in multithreading

environment, it will hold the other threads in runnable or non-

runnable state until current thread releases the lock of object.

5) ArrayList uses Iterator interface to

traverse the elements.
Vector uses Enumeration interface to traverse the elements. But it

can use Iterator also.

Example of Java Vector Using Enumeration

Let's see a simple example of java Vector class that uses Enumeration interface.

import java.util.*;
class TestVector1{

 public static void main(String args[]){
 Vector<String> v=new Vector<String>();//creating vector
 v.add("umesh");//method of Collection

 v.addElement("irfan");//method of Vector
 v.addElement("kumar");
 //traversing elements using Enumeration

 Enumeration e=v.elements();
 while(e.hasMoreElements()){
 System.out.println(e.nextElement());

 }
 }
}

Java HashSet class
Java HashSet class is used to create a collection that uses a hash table for storage. It inherits the

AbstractSet class and implements Set interface.

The important points about Java HashSet class are:
 HashSet stores the elements by using a mechanism called hashing.

Output:
umesh

irfan

kumar

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

44

 HashSet contains unique elements only.

Difference between List and Set
List can contain duplicate elements whereas Set contains unique elements only.

Constructors of Java HashSet class:

Constructor Description

HashSet() It is used to construct a default HashSet.

HashSet(Collection c) It is used to initialize the hash set by using the elements of the collection c.

HashSet(int capacity)
It is used to initialize the capacity of the hash set to the given integer value capacity.

The capacity grows automatically as elements are added to the HashSet.

Methods of Java HashSet class:

Method Description

void clear() It is used to remove all of the elements from this set.

boolean contains(Object o) It is used to return true if this set contains the specified element.

boolean add(Object o) It is used to adds the specified element to this set if it is not already present.

boolean isEmpty() It is used to return true if this set contains no elements.

boolean remove(Object o) It is used to remove the specified element from this set if it is present.

Iterator iterator() It is used to return an iterator over the elements in this set.

int size() It is used to return the number of elements in this set.

Java HashSet Example

import java.util.*;
class TestCollection9{

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

45

 public static void main(String args[]){
 //Creating HashSet and adding elements
 HashSet<String> set=new HashSet<String>();
 set.add("Ravi");
 set.add("Vijay");
 set.add("Ravi");
 set.add("Ajay");
 //Traversing elements
 Iterator<String> itr=set.iterator();
 while(itr.hasNext()){
 System.out.println(itr.next());
 }
 }
}

Java LinkedHashSet class
Java LinkedHashSet class is a Hash table and Linked list implementation of the set interface. It

inherits HashSet class and implements Set interface.

The important points about Java LinkedHashSet class are:
 Contains unique elements only like HashSet.
 Provides all optional set operations, and permits null elements.
 Maintains insertion order.

Constructor Description

HashSet() It is used to construct a default HashSet.

HashSet(Collection c)
It is used to initialize the hash set by using the elements of the

collection c.

LinkedHashSet(int capacity)
It is used initialize the capacity of the linkedhashset to the given

integer value capacity.

LinkedHashSet(int capacity,

float fillRatio)

It is used to initialize both the capacity and the fill ratio (also called

load capacity) of the hash set from its argument.

Example of LinkedHashSet class:

import java.util.*;
class TestCollection10{

 public static void main(String args[]){
 LinkedHashSet<String> al=new LinkedHashSet<String>();

 al.add("Ravi");
 al.add("Vijay");

 al.add("Ravi");
 al.add("Ajay");
 Iterator<String> itr=al.iterator();
 while(itr.hasNext()){
 System.out.println(itr.next());

Output
 Ajay

 Vijay

 Ravi

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

46

 }
 }

}
Output
 Ravi

 Vijay

 Ajay

Java TreeSet class

Java TreeSet class implements the Set interface that uses a tree for storage. It inherits AbstractSet

class and implements NavigableSet interface. The objects of TreeSet class are stored in ascending

order.

The important points about Java TreeSet class are:

 Contains unique elements only like HashSet.
 Access and retrieval times are quiet fast.
 Maintains ascending order.

Constructor Description

TreeSet()
It is used to construct an empty tree set that will be sorted in an ascending

order according to the natural order of the tree set.

TreeSet(Collection c)
It is used to build a new tree set that contains the elements of the collection

c.

TreeSet(Comparator

comp)

It is used to construct an empty tree set that will be sorted according to

given comparator.

TreeSet(SortedSet ss)
It is used to build a TreeSet that contains the elements of the given

SortedSet.

Methods of Java TreeSet class

Method Description

boolean addAll(Collection c) It is used to add all of the elements in the specified collection to this set.

boolean contains(Object o) It is used to return true if this set contains the specified element.

boolean isEmpty() It is used to return true if this set contains no elements.

boolean remove(Object o) It is used to remove the specified element from this set if it is present.

void add(Object o) It is used to add the specified element to this set if it is not already present.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

47

void clear() It is used to remove all of the elements from this set.

Object first() It is used to return the first (lowest) element currently in this sorted set.

Object last() It is used to return the last (highest) element currently in this sorted set.

int size() It is used to return the number of elements in this set.

Java TreeSet Example

import java.util.*;
class TestCollection11{
 public static void main(String args[]){
 //Creating and adding elements
 TreeSet<String> al=new TreeSet<String>();
 al.add("Ravi");
 al.add("Vijay");
 al.add("Ravi");
 al.add("Ajay");
 //Traversing elements
 Iterator<String> itr=al.iterator();
 while(itr.hasNext()){
 System.out.println(itr.next());
 }

 }
}

Output:
Ajay

Ravi

Vijay

Java Queue Interface

Java Queue interface orders the element in FIFO(First In First Out) manner. In FIFO, first element is

removed first and last element is removed at last.

Methods of Java Queue Interface

Method Description

boolean add(object)
It is used to insert the specified element into this queue and return true upon

success.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

48

Object remove() It is used to retrieves and removes the head of this queue.

Object poll()
It is used to retrieves and removes the head of this queue, or returns null if

this queue is empty.

Object element() It is used to retrieves, but does not remove, the head of this queue.

Object peek()
It is used to retrieves, but does not remove, the head of this queue, or returns

null if this queue is empty.

Java PriorityQueue Example

import java.util.*;
class TestCollection12{

public static void main(String args[]){
PriorityQueue<String> queue=new PriorityQueue<String>();

 queue.add("Amit");
queue.add("Vijay");
queue.add("Karan");
queue.add("Jai");
queue.add("Rahul");
System.out.println("head:"+queue.element());
System.out.println("head:"+queue.peek());
System.out.println("iterating the queue elements:");
Iterator itr=queue.iterator();
while(itr.hasNext()){
System.out.println(itr.next());
}
queue.remove();
queue.poll();
System.out.println("after removing two elements:");
Iterator<String> itr2=queue.iterator();

 while(itr2.hasNext()){
 System.out.println(itr2.next());
 }

}
}

Output:head:Amit

 head:Amit

 iterating the queue

elements:

 Amit

 Jai

 Karan

 Vijay

 Rahul

 after removing two

elements:

 Karan

 Rahul

 Vijay

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

49

Java Map Interface
A map contains values on the basis of key i.e. key and value pair. Each key and value pair is known

as an entry. Map contains only unique keys.

Map is useful if you have to search, update or delete elements on the basis of key.

Useful methods of Map interface

Method Description

Object put(Object key, Object value) It is used to insert an entry in this map.

void putAll(Map map) It is used to insert the specified map in this map.

Object remove(Object key) It is used to delete an entry for the specified key.

Object get(Object key) It is used to return the value for the specified key.

boolean containsKey(Object key) It is used to search the specified key from this map.

Map.Entry Interface

Entry is the sub interface of Map. So we will be accessed it by Map.Entry name. It provides methods

to get key and value.

Methods of Map.Entry interface

Method Description

Object getKey() It is used to obtain key.

Object getValue() It is used to obtain value.

Java Map Example: Generic (New Style)
import java.util.*;

class MapInterfaceExample{

 public static void main(String args[]){

 Map<Integer,String> map=new HashMap<Integer,String>();

 map.put(100,"Amit");

 map.put(101,"Vijay");

 map.put(102,"Rahul");

 for(Map.Entry m:map.entrySet()){

 System.out.println(m.getKey()+" "+m.getValue());

 }

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

50

 }

}

Output:

102 Rahul

100 Amit

101 Vijay

Java HashMap class
Java HashMap class implements the map interface by using a hashtable. It inherits AbstractMap

class and implements Map interface.

The important points about Java HashMap class are:

o A HashMap contains values based on the key.

o It contains only unique elements.

o It may have one null key and multiple null values.

o It maintains no order.

HashMap class Parameters
Let's see the Parameters for java.util.HashMap class.

o K: It is the type of keys maintained by this map.

o V: It is the type of mapped values.

Constructors of Java HashMap class

Constructor Description

HashMap() It is used to construct a default HashMap.

HashMap(Map m) It is used to initializes the hash map by using the elements of the given Map

object m.

HashMap(int capacity) It is used to initializes the capacity of the hash map to the given integer value,

capacity.

Method Description

void clear() It is used to remove all of the mappings from this map.

boolean containsKey(Object
key)

It is used to return true if this map contains a mapping for the specified key.

boolean containsValue(Object
value)

It is used to return true if this Map maps one or more keys to the specified value.

boolean isEmpty() It is used to return true if this map contains no key-value mappings.

Set keySet() It is used to return a set view of the keys contained in this map.

int size() It is used to return the number of key-value mappings in this map.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

51

Java HashMap Example

import java.util.*;

class TestCollection13{

 public static void main(String args[]){

 HashMap<Integer,String> hm=new HashMap<Integer,String>();

 hm.put(100,"Amit");

 hm.put(101,"Vijay");

 hm.put(102,"Rahul");

 for(Map.Entry m:hm.entrySet()){

 System.out.println(m.getKey()+" "+m.getValue());

 // Remove value for key 102

 hm.remove(102);

System.out.println("Values after remove: "+ hm);

 }

 }

}

Java LinkedHashMap class
Java LinkedHashMap class is Hash table and Linked list implementation of the Map interface,

with predictable iteration order. It inherits HashMap class and implements the Map interface.

The important points about Java HashMap class are:

o A LinkedHashMap contains values based on the key.

o It contains only unique elements.

o It may have one null key and multiple null values.

o It is same as HashMap instead maintains insertion order.

LinkedHashMap class Parameters
Let's see the Parameters for java.util.LinkedHashMap class.

o K: It is the type of keys maintained by this map.

o V: It is the type of mapped values.

Constructors of Java LinkedHashMap class

Constructor Description

LinkedHashMap() It is used to construct a default LinkedHashMap.

LinkedHashMap(int capacity) It is used to initialize a LinkedHashMap with the given capacity.

LinkedHashMap(Map m) It is used to initialize the LinkedHashMap with the elements from the

given Map class m.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

52

Methods of Java LinkedHashMap class

Method Description

Object get(Object key) It is used to return the value to which this map maps the specified

key.

void clear() It is used to remove all mappings from this map.

boolean containsKey(Object key) It is used to return true if this map maps one or more keys to the

specified value.

Java LinkedHashMap Example

import java.util.*;

class TestCollection14{

 public static void main(String args[]){

 LinkedHashMap<Integer,String> hm=new LinkedHashMap<Integer,String>();

 hm.put(100,"Amit");

 hm.put(101,"Vijay");

 hm.put(102,"Rahul");

for(Map.Entry m:hm.entrySet()){

 System.out.println(m.getKey()+" "+m.getValue());

 // Remove value for key 102

 hm.remove(102);

 System.out.println("Values after remove: "+ hm);

} } }

Java TreeMap class

Java TreeMap class implements the Map interface by using a tree. It provides an efficient

means of storing key/value pairs in sorted order.

The important points about Java TreeMap class are:

o A TreeMap contains values based on the key. It implements the NavigableMap interface

and extends AbstractMap class.

o It contains only unique elements.

o It cannot have null key but can have multiple null values.

o It is same as HashMap instead maintains ascending order.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

53

TreeMap class Parameters

Let's see the Parameters for java.util.TreeMap class.

o K: It is the type of keys maintained by this map.

o V: It is the type of mapped values.

Constructors of Java TreeMap class

Constructor Description

TreeMap() It is used to construct an empty tree map that will be sorted using the

natural order of its key.

TreeMap(Map m) It is used to initialize a tree map with the entries from m, which will be

sorted using the natural order of the keys.

TreeMap(SortedMap sm) It is used to initialize a tree map with the entries from the SortedMap sm,

which will be sorted in the same order as sm.

Methods of Java TreeMap class

Method Description

boolean containsKey(Object key) It is used to return true if this map contains a mapping for the

specified key.

boolean containsValue(Object value) It is used to return true if this map maps one or more keys to

the specified value.

Object firstKey() It is used to return the first (lowest) key currently in this sorted

map.

Object get(Object key) It is used to return the value to which this map maps the

specified key.

Object lastKey() It is used to return the last (highest) key currently in this sorted

map.

Object remove(Object key) It is used to remove the mapping for this key from this TreeMap

if present.

void putAll(Map map) It is used to copy all of the mappings from the specified map to

this map.

int size() It is used to return the number of key-value mappings in this

map.

Collection values() It is used to return a collection view of the values contained in

this map.

Java TreeMap Example:

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

54

import java.util.*;

class TestCollection15{

 public static void main(String args[]){

 TreeMap<Integer,String> hm=new TreeMap<Integer,String>();

 hm.put(100,"Amit");

 hm.put(102,"Ravi");

 hm.put(101,"Vijay");

 hm.put(103,"Rahul");

 for(Map.Entry m:hm.entrySet()){

 System.out.println(m.getKey()+" "+m.getValue());

 // Remove value for key 102

 hm.remove(102);

 System.out.println("Values after remove: "+ hm);

 }

 }

}

What is difference between HashMap and TreeMap?

HashMap TreeMap

1) HashMap can contain one null key. TreeMap can not contain any null key.

2) HashMap maintains no order. TreeMap maintains ascending order.

Java Hashtable class
Java Hashtable class implements a hashtable, which maps keys to values. It inherits Dictionary

class and implements the Map interface.

The important points about Java Hashtable class are:

o A Hashtable is an array of list. Each list is known as a bucket. The position of bucket is

identified by calling the hashcode() method. A Hashtable contains values based on the

key.

o It contains only unique elements.

o It may have not have any null key or value.

o It is synchronized.

Hashtable class Parameters
Let's see the Parameters for java.util.Hashtable class.

o K: It is the type of keys maintained by this map.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

55

o V: It is the type of mapped values.

Constructors of Java Hashtable class

Constructor Description

Hashtable() It is the default constructor of hash table it instantiates the

Hashtable class.

Hashtable(int size) It is used to accept an integer parameter and creates a hash table

that has an initial size specified by integer value size.

Java Hashtable Example

import java.util.*;

class TestCollection16{

 public static void main(String args[]){

 Hashtable<Integer,String> hm=new Hashtable<Integer,String>();

 hm.put(100,"Amit");

 hm.put(102,"Ravi");

 hm.put(101,"Vijay");

 hm.put(103,"Rahul");

 for(Map.Entry m:hm.entrySet()){

 System.out.println(m.getKey()+" "+m.getValue());

 // Remove value for key 102

 hm.remove(102);

 System.out.println("Values after remove: "+ hm);

 }

 }

}

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

56

Chapter 4 File and Exception Handling

Exception Handling in Java

The exception handling in java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can be maintained.

In this page, we will learn about java exception, its type and the difference between checked

and unchecked exceptions.

What is exception
Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime.

What is exception handling

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL,

Remote etc.

Types of Exception
There are mainly two types of exceptions: checked and unchecked where error is considered as

unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

1) Checked Exception
The classes that extend Throwable class except RuntimeException and Error are known as

checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

57

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked
exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Java Exception Handling Keywords
There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try block
Java try block is used to enclose the code that might throw an exception. It must be used

within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

try{

//code that may throw exception

 }catch(Exception ref){}

syntax of try-finally block

try{

//code that may throw exception

}finally{}

Java catch block
Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling
Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{

 public static void main(String args[]){

 int data=50/0;//may throw exception

 System.out.println("rest of the code...");

}

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

58

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

public class Testtrycatch2{

 public static void main(String args[]){

 try{

 int data=50/0;

 }catch(ArithmeticException e){System.out.println(e);}

 System.out.println("rest of the code...");

}

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Java Multi catch block

If you have to perform different tasks at the occurrence of different Exceptions, use java multi

catch block.

Let's see a simple example of java multi-catch block.

public class TestMultipleCatchBlock{

 public static void main(String args[]){

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(ArithmeticException e){System.out.println("task1 is completed");}

 catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

 catch(Exception e){System.out.println("common task completed");}

 System.out.println("rest of the code...");

 }

}
Output:task1 completed

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

59

 rest of the code...

Java Nested try block

The try block within a try block is known as nested try block in java.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire

block itself may cause another error. In such cases, exception handlers have to be nested.

Syntax:

....

try

{

 statement 1;

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

....

Difference between throw and throws in Java

There are many differences between throw and throws keywords. A list of differences between

throw and throws are given below:

No. throw throws

1) Java throw keyword is used to explicitly

throw an exception.

Java throws keyword is used to declare an exception.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

60

2) Checked exception cannot be propagated

using throw only.

Checked exception can be propagated with throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple exceptions. You can declare multiple exceptions e.g.

public void method()throws IOException,SQLException.

Java throw example

void m(){

throw new ArithmeticException("sorry");

}

Java throws example

void m()throws ArithmeticException{

//method code

}

Java throw and throws example

void m()throws ArithmeticException{

throw new ArithmeticException("sorry");

}

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to the

programmer that there may occur an exception so it is better for the programmer to provide
the exception handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any

unchecked exception such as NullPointerException, it is programmers fault that he is not
performing check up before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{

//method code

}

Which exception should be declared

Ans) checked exception only, because:

o unchecked Exception: under your control so correct your code.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

61

o error: beyond your control e.g. you are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws example

Let's see the example of java throws clause which describes that checked exceptions can be

propagated by throws keyword.

import java.io.IOException;

class Testthrows1{

 void m()throws IOException{

 throw new IOException("device error");//checked exception

 }

 void n()throws IOException{

 m();

 }

 void p(){

 try{

 n();

 }catch(Exception e){System.out.println("exception handled");}

 }

 public static void main(String args[]){

 Testthrows1 obj=new Testthrows1();

 obj.p();

 System.out.println("normal flow...");

 }

}

Output:

exception handled

normal flow...

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

62

Java finally block

Java finally block is a block that is used to execute important code such as closing

connection, stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Why use java finally

o Finally block in java can be used to put "cleanup" code such as closing a file, closing

connection etc.

Usage of Java finally

Let's see the different cases where java finally block can be used.

Case 1

Let's see the java finally example where exception doesn't occur.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

63

class TestFinallyBlock{

 public static void main(String args[]){

 try{

 int data=25/5;

 System.out.println(data);

 }

 catch(NullPointerException e){System.out.println(e);}

 finally{System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}
Output:5

 finally block is always executed

 rest of the code...

Case 2

Let's see the java finally example where exception occurs and not handled.

class TestFinallyBlock1{

 public static void main(String args[]){

 try{

 int data=25/0;

 System.out.println(data);

 }

 catch(NullPointerException e){System.out.println(e);}

 finally{System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}
Output:finally block is always executed

 Exception in thread main java.lang.ArithmeticException:/ by zero

Java Custom Exception Creating user defined Exceptions

If you are creating your own Exception that is known as custom exception or user-defined

exception. Java custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message.

Let's see a simple example of java custom exception.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

64

class InvalidAgeException extends Exception{

 InvalidAgeException(String s){

 super(s);

 }

}

class TestCustomException1{

 static void validate(int age)throws InvalidAgeException{

 if(age<18)

 throw new InvalidAgeException("not valid");

 else

 System.out.println("welcome to vote");

 }

 public static void main(String args[]){

 try{

 validate(13);

 }catch(Exception m){System.out.println("Exception occured: "+m);}

 System.out.println("rest of the code...");

 }

}
Output:Exception occured: InvalidAgeException:not valid

 rest of the code...

File Handling

Some important Byte stream classes.

Stream class Description

BufferedInputStream Used for Buffered Input Stream.

BufferedOutputStream Used for Buffered Output Stream.

DataInputStream Contains method for reading java standard datatype

DataOutputStream An output stream that contain method for writing java standard data type

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

65

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that write to a file.

InputStream Abstract class that describe stream input.

OutputStream Abstract class that describe stream output.

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all
the classes required for input and output operations.

We can perform file handling in java by Java I/O API.

Stream
A stream is a sequence of data.In Java a stream is composed of bytes. It's called a stream

because it is like a stream of water that continues to flow.

 In java, 3 streams are created for us automatically. All these streams are attached with

console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

1. System.out.println("simple message");

2. System.err.println("error message");

OutputStream vs InputStream
The explanation of OutputStream and InputStream classes are given below:

OutputStream
Java application uses an output stream to write data to a destination, it may be a file, an array,

peripheral device or socket.

InputStream
Java application uses an input stream to read data from a source, it may be a file, an array,
peripheral device or socket.

Let's understand working of Java OutputStream and InputStream by the figure given below.

OutputStream Hierarchy

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

66

InputStream Hierarchy

FileOutputStream class methods

Method Description

protected void finalize() It is sued to clean up the connection with the file output stream.

void write(byte[] ary) It is used to write ary.length bytes from the byte array to the file output stream.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

67

void write(int b) It is used to write the specified byte to the file output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with the stream.

void close() It is used to closes the file output stream.

Java FileOutputStream Example 1: write byte

import java.io.*;

public class FileOutputStreamExample {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("testout.txt");

 fout.write(65);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

}

Output:

Success...

The content of a text file testout.txt is set with the data A.

testout.txt

A

Java FileOutputStream example 2: write string

import java.io.FileOutputStream;

public class FileOutputStreamExample {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("testout.txt");

 String s="Welcome to javaTpoint.";

 byte b[]=s.getBytes();//converting string into byte array

 fout.write(b);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

68

}

Output:

Success...

Java FileInputStream Class

Java FileInputStream class obtains input bytes from a file. It is used for reading byte-oriented

data (streams of raw bytes) such as image data, audio, video etc. You can also read character-
stream data. But, for reading streams of characters, it is recommended to use FileReader class.

import java.io.FileInputStream;

public class DataStreamExample {

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("testout.txt");

 int i=0;

 while((i=fin.read())!=-1){

 System.out.print((char)i);

 }

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

Output:

Welcome

Java BufferedOutputStream Class

Java BufferedOutputStream class is used for buffering an output stream. It internally uses

buffer to store data. It adds more efficiency than to write data directly into a stream. So, it
makes the performance fast.

For adding the buffer in an OutputStream, use the BufferedOutputStream class. Let's see the
syntax for adding the buffer in an OutputStream:

1. OutputStream os= new BufferedOutputStream(new FileOutputStream("testout.txt"));

Java BufferedOutputStream class constructors

Constructor Description

BufferedOutputStream(OutputStream os) It creates the new buffered output stream which is used for writing

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

69

the data to the specified output stream.

BufferedOutputStream(OutputStream os, int size) It creates the new buffered output stream which is used for writing

the data to the specified output stream with a specified buffer size.

import java.io.*;

public class BufferedOutputStreamExample{

public static void main(String args[])throws Exception{

 FileOutputStream fout=new FileOutputStream("testout.txt");

 BufferedOutputStream bout=new BufferedOutputStream(fout);

 String s="Welcome .";

 byte b[]=s.getBytes();

 bout.write(b);

 bout.flush();

 bout.close();

 fout.close();

 System.out.println("success");

}

}

Output:

Success

testout.txt

Welcome

Java BufferedInputStream Class
Java BufferedInputStream class is used to read information from stream. It internally uses

buffer mechanism to make the performance fast.

The important points about BufferedInputStream are:

o When the bytes from the stream are skipped or read, the internal buffer automatically

refilled from the contained input stream, many bytes at a time.

o When a BufferedInputStream is created, an internal buffer array is created.

Java BufferedInputStream class declaration
Let's see the declaration for Java.io.BufferedInputStream class:

1. public class BufferedInputStream extends FilterInputStream

Java BufferedInputStream class constructors

Constructor Description

BufferedInputStream(InputStream IS) It creates the BufferedInputStream and saves it

argument, the input stream IS, for later use.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

70

BufferedInputStream(InputStream IS, int size) It creates the BufferedInputStream with a specified

buffer size and saves it argument, the input stream IS,

for later use.

import java.io.*;

public class BufferedInputStreamExample{

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("D:\\testout.txt");

 BufferedInputStream bin=new BufferedInputStream(fin);

 int i;

 while((i=bin.read())!=-1){

 System.out.print((char)i);

 }

 bin.close();

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

Welcome

Output:

Welcome

Java ByteArrayOutputStream Class

Java ByteArrayOutputStream class is used to write common data into multiple files. In this

stream, the data is written into a byte array which can be written to multiple streams later.

The ByteArrayOutputStream holds a copy of data and forwards it to multiple streams.

The buffer of ByteArrayOutputStream automatically grows according to data.

Java ByteArrayOutputStream class constructors

Constructor Description

ByteArrayOutputStream() Creates a new byte array output stream with the initial capacity of 32

bytes, though its size increases if necessary.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

71

ByteArrayOutputStream(int

size)

Creates a new byte array output stream, with a buffer capacity of the

specified size, in bytes.

Example of Java ByteArrayOutputStream
Let's see a simple example of java ByteArrayOutputStream class to write common data into 2

files: f1.txt and f2.txt.

import java.io.*;

public class DataStreamExample {

public static void main(String args[])throws Exception{

 FileOutputStream fout1=new FileOutputStream("f1.txt");

 FileOutputStream fout2=new FileOutputStream("f2.txt");

 ByteArrayOutputStream bout=new ByteArrayOutputStream();

 bout.write(65);

 bout.writeTo(fout1);

 bout.writeTo(fout2);

 bout.flush();

 bout.close();//has no effect

 System.out.println("Success...");

 }

 }

Java DataOutputStream Class

Java DataOutputStream class allows an application to write primitive Java data types to the

output stream in a machine-independent way.

Java application generally uses the data output stream to write data that can later be read by a
data input stream.

import java.io.*;

public class OutputExample {

 public static void main(String[] args) throws IOException {

 FileOutputStream file = new FileOutputStream(testout.txt);

 DataOutputStream data = new DataOutputStream(file);

 data.writeInt(65);

 data.flush();

 data.close();

 System.out.println("Succcess...");

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

72

 }

}

Java DataInputStream Class

Java DataInputStream class allows an application to read primitive data from the input stream

in a machine-independent way.

Java application generally uses the data output stream to write data that can later be read by a

data input stream.

import java.io.*;

public class DataStreamExample {

 public static void main(String[] args) throws IOException {

 InputStream input = new FileInputStream("testout.txt");

 DataInputStream inst = new DataInputStream(input);

 int count = input.available();

 byte[] ary = new byte[count];

 inst.read(ary);

 for (byte bt : ary) {

 char k = (char) bt;

 System.out.print(k+"-");

 }

 }

}

Here, we are assuming that you have following data in "testout.txt" file:

JAVA

Output:

J-A-V-A

Character Streams

Java FileWriter class

Java FileWriter class is used to write character-oriented data to the file.

Constructors of FileWriter class

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

73

Constructor Description

FileWriter(String file) creates a new file. It gets file name in string.

FileWriter(File file) creates a new file. It gets file name in File object.

Java FileWriter Example
In this example, we are writing the data in the file abc.txt.

import java.io.*;

class Simple{

 public static void main(String args[]){

 try{

 FileWriter fw=new FileWriter("abc.txt");

 fw.write("my name is sachin");

 fw.close();

 }catch(Exception e){System.out.println(e);}

 System.out.println("success");

 }

}

Java FileReader class

Java FileReader class is used to read data from the file. It returns data in byte format like

FileInputStream class.

Constructors of FileWriter class

Constructor Description

FileReader(String file) It gets filename in string. It opens the given file in read mode. If file

doesn't exist, it throws FileNotFoundException.

FileReader(File file) It gets filename in file instance. It opens the given file in read mode. If file

doesn't exist, it throws FileNotFoundException.

Methods of FileReader class

Method Description

1) public int read() returns a character in ASCII form. It returns -1 at the end of

file.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

74

2) public void close() closes FileReader.

Java FileReader Example
In this example, we are reading the data from the file abc.txt file.

import java.io.*;

class Simple{

 public static void main(String args[])throws Exception{

 FileReader fr=new FileReader("abc.txt");

 int i;

 while((i=fr.read())!=-1)

 System.out.println((char)i);

 fr.close();

 }

}

Chapter 5 Applet, AWT and Swing Programming

Applet

An applet is a Java program that runs in a Web browser. An applet can be a

fully functional Java application because it has the entire Java API at its

disposal.

There are some important differences between an applet and a standalone

Java application, including the following −

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not define

main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the applet is

downloaded to the user's machine.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

75

 A JVM is required to view an applet. The JVM can be either a plug-in of the Web

browser or a separate runtime environment.

 The JVM on the user's machine creates an instance of the applet class and invokes

various methods during the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The

security of an applet is often referred to as sandbox security, comparing the applet

to a child playing in a sandbox with various rules that must be followed.

Java Applet

Applet is a special type of program that is embedded in the webpage to generate the dynamic

content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

o It works at client side so less response time.

o Secured

o It can be executed by browsers running under many plateforms, including Linux,

Windows, Mac Os etc.

Drawback of Applet

o Plugin is required at client browser to execute applet.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

76

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life

cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle

methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

2. public void start(): is invoked after the init() method or browser is maximized. It is

used to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or

browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once.

Life Cycle of an Applet

Four methods in the Applet class gives you the framework on which you build

any serious applet −

 init − This method is intended for whatever initialization is needed for your applet.

It is called after the param tags inside the applet tag have been processed.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

77

 start − This method is automatically called after the browser calls the init method.

It is also called whenever the user returns to the page containing the applet after

having gone off to other pages.

 stop − This method is automatically called when the user moves off the page on

which the applet sits. It can, therefore, be called repeatedly in the same applet.

 destroy − This method is only called when the browser shuts down normally.

Because applets are meant to live on an HTML page, you should not normally leave

resources behind after a user leaves the page that contains the applet.

 paint − Invoked immediately after the start() method, and also any time the applet

needs to repaint itself in the browser. The paint() method is actually inherited from

the java.awt.

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an html file
and place the applet code in html file. Now click the html file.

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet{

public void paint(Graphics g){

g.drawString("welcome",150,150);

}

}

myapplet.html

<html>

<body>

<applet code="First.class" width="300" height="300">

</applet>

</body>

</html>

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

78

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in

comment and compile it. After that run it by: appletviewer First.java. Now Html file is not
required but it is for testing purpose only.

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet{

public void paint(Graphics g){

g.drawString("welcome to applet",150,150);

}

}

/*

<applet code="First.class" width="300" height="300">

</applet>

*/

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java

c:\>appletviewer First.java

Commonly used methods of Graphics class:

1. public abstract void drawString(String str, int x, int y): is used to draw the

specified string.

2. public void drawRect(int x, int y, int width, int height): draws a rectangle with the

specified width and height.

3. public abstract void fillRect(int x, int y, int width, int height): is used to fill

rectangle with the default color and specified width and height.

4. public abstract void drawOval(int x, int y, int width, int height): is used to draw

oval with the specified width and height.

5. public abstract void fillOval(int x, int y, int width, int height): is used to fill oval

with the default color and specified width and height.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

79

6. public abstract void drawLine(int x1, int y1, int x2, int y2): is used to draw line

between the points(x1, y1) and (x2, y2).

7. public abstract boolean drawImage(Image img, int x, int y, ImageObserver

observer): is used draw the specified image.

8. public abstract void drawArc(int x, int y, int width, int height, int startAngle, int

arcAngle): is used draw a circular or elliptical arc.

9. public abstract void fillArc(int x, int y, int width, int height, int startAngle, int

arcAngle): is used to fill a circular or elliptical arc.

10. public abstract void setColor(Color c): is used to set the graphics current color to

the specified color.

11.public abstract void setFont(Font font): is used to set the graphics current font to

 the specified font.
Color
Following example demonstrates how to create an applet which will have fill

color in a rectangle using setColor(), fillRect() methods of Graphics class to fill

color in a Rectangle.

import java.applet.*;
import java.awt.*;

public class fillColor extends Applet {
 public void paint(Graphics g) {
 g.drawRect(300,150,200,100);
 g.setColor(Color.yellow);
 g.fillRect(300,150, 200, 100);
 g.setColor(Color.magenta);
 g.drawString("Rectangle",500,150);
 }
}

Java AWT

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in

java.

Java AWT components are platform-dependent i.e. components are displayed according to the

view of operating system. AWT is heavyweight i.e. its components are using the resources of
OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,
RadioButton, CheckBox, Choice, List etc.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

80

Container

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extends Container class are known as container such as
Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use frame, dialog
or another window for creating a window.

The Panel is the container Panel

that doesn't contain title bar and menu bars. It can have other components like button,
textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

81

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size (width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by default false.

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing

Button component on the Frame.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

82

import java.awt.*;

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[]){

First f=new First();

}}

LayoutManagers:

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is

an interface that is implemented by all the classes of layout managers. There are following
classes that represents the layout managers:

1. java.awt.BorderLayout

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

83

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

1.BorderLayout

import java.awt.*;

import javax.swing.*;

public class Border {

JFrame f;

Border(){

 f=new JFrame();

 JButton b1=new JButton("NORTH");;

 JButton b2=new JButton("SOUTH");;

 JButton b3=new JButton("EAST");;

 JButton b4=new JButton("WEST");;

 JButton b5=new JButton("CENTER");;

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

84

 f.add(b1,BorderLayout.NORTH);

 f.add(b2,BorderLayout.SOUTH);

 f.add(b3,BorderLayout.EAST);

 f.add(b4,BorderLayout.WEST);

 f.add(b5,BorderLayout.CENTER);

 f.setSize(300,300);

 f.setVisible(true);

}

public static void main(String[] args) {

 new Border();

}

}

GridLayout

The GridLayout is used to arrange the components in rectangular grid. One component is

displayed in each rectangle.

Constructors of GridLayout class:

1. GridLayout(): creates a grid layout with one column per component in a row.

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and

columns but no gaps between the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with

the given rows and columns alongwith given horizontal and vertical gaps

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

85

import java.awt.*;

import javax.swing.*;

public class MyGridLayout{

JFrame f;

MyGridLayout(){

 f=new JFrame();

 JButton b1=new JButton("1");

 JButton b2=new JButton("2");

 JButton b3=new JButton("3");

 JButton b4=new JButton("4");

 JButton b5=new JButton("5");

 JButton b6=new JButton("6");

 JButton b7=new JButton("7");

 JButton b8=new JButton("8");

 JButton b9=new JButton("9");

 f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

 f.add(b6);f.add(b7);f.add(b8);f.add(b9);

 f.setLayout(new GridLayout(3,3));

 //setting grid layout of 3 rows and 3 columns

 f.setSize(300,300);

 f.setVisible(true);

}

public static void main(String[] args) {

 new MyGridLayout();

}

}

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

86

FlowLayout

The FlowLayout is used to arrange the components in a line, one after another (in a flow). It

is the default layout of applet or panel.

import java.awt.*;

import javax.swing.*;

public class MyFlowLayout{

JFrame f;

MyFlowLayout(){

 f=new JFrame();

 JButton b1=new JButton("1");

 JButton b2=new JButton("2");

 JButton b3=new JButton("3");

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

87

 JButton b4=new JButton("4");

 JButton b5=new JButton("5");

 f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

 f.setLayout(new FlowLayout(FlowLayout.RIGHT));

 //setting flow layout of right alignment

 f.setSize(300,300);

 f.setVisible(true);

}

public static void main(String[] args) {

 new MyFlowLayout();

}

}

Java Adapter Classes
Java adapter classes provide the default implementation of listener interfaces. If you inherit the

adapter class, you will not be forced to provide the implementation of all the methods of

listener interfaces. So it saves code.
The adapter classes are found

in java.awt.event, java.awt.dnd and javax.swing.event packages. The Adapter classes

with their corresponding listener interfaces are given below.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

88

Event Delegation model

Difference between AWT and Swing
There are many differences between java awt and swing that are given below.

No. Java AWT Java Swing

1) AWT components are platform-dependent. Java swing components are platform-

independent.

2) AWT components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look and feel. Swing supports pluggable look and feel.

4) AWT provides less components than Swing. Swing provides more powerful components such

as tables, lists, scrollpanes, colorchooser,

tabbedpane etc.

5) AWT doesn't follows MVC(Model View

Controller) where model represents data, view

represents presentation and controller acts as an

interface between model and view.

Swing follows MVC.

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

89

 Java’s delegation event model
The event model is based on the Event Source and Event Listeners. Event Listener is an object that

receives the messages / events. The Event Source is any object which creates the message / event.

The Event Delegation model is based on – The Event Classes, The Event Listeners, Event Objects.

There are three participants in event delegation model in Java;

- Event Source – the class which broadcasts the events

- Event Listeners – the classes which receive notifications of events

- Event Object – the class object which describes the event.

Java Swing Tutorial
Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create window-

based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely

written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Hierarchy of Java Swing classes

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

90

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the
JFrame object inside the main() method.

File: FirstSwingExample.java

import javax.swing.*;

public class FirstSwingExample {

public static void main(String[] args) {

JFrame f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);//x axis, y axis, width, height

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

91

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

}

}

OR

 import javax.swing.*;

public class Simple2 extends JFrame{//inheriting JFrame

JFrame f;

Simple2(){

JButton b=new JButton("click");//create button

b.setBounds(130,100,100, 40);

add(b);//adding button on frame

setSize(400,500);

setLayout(null);

setVisible(true);

}

public static void main(String[] args) {

new Simple2();

}}

Java Notes Prepared By Prof Bhujbal V N

ACS College Narayangaon

92

